首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM F3474-20
到馆提醒
收藏跟踪
购买正版
Standard Practice for Establishing Exoskeleton Functional Ergonomic Parameters and Test Metrics 建立外骨骼功能人类工效学参数和测试量度的标准实施规程
发布日期: 2020-12-15
1.1 本规程提供了一种推荐方法和一组选项,用于评估外骨骼人类用户的一个或多个特定人体工程学参数。 1.2 本实践提供了功能工效学标准,用于工业、军事、医疗、急救和娱乐领域内外骨骼的设计、生产和评估。在设计外骨骼时,自然的无人辅助人体运动学和动力学,以及用户经历的由此产生的应变和疲劳应为显著的设计参数。自然无辅助人体运动学和动力学的任何变化都可能影响外骨骼在增强用户性能方面的有效性。 因此,该实践的定义原则是建立可从中选择的客观测量,以评估人体运动学和动力学,以及用户在外骨骼最终用途应用的任务环境中所经历的最终应变和疲劳。 1.3 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.4 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 2.1 本实践描述了在外骨骼评估的近(小时/天)、中(天/周)和远(月/年)阶段应执行的测量( 图1 ). 从受外骨骼影响的身体区域(例如,上体、下体或两者)评估与每个任务方法有关的功能条件和指标。这些可能位于受外骨骼影响的身体区域内,也可能远离该区域(例如,上身外骨骼可能会影响躯干和脊椎)。预期效果以及对用户身体的意外阻碍是重要的考虑因素。 评估将在与外骨骼实现的最终应用相关的背景下进行。这种做法适用于工业、军事、医疗、急救和娱乐领域,但未来可能会出现其他领域,需要加以考虑。每个领域都是独一无二的;然而,收集的任务方法和指标可能是唯一的,或者在任意数量的用户域中重叠。 图1 外骨骼评估决策树 2.2 任务方法及其指标要么在实验室环境、现场环境中管理,要么在实验室和现场环境中管理。除非另有规定,患者功能结果测量和疼痛是在医学领域进行测试时应考虑的关键指标。 外骨骼生产者或研究人员,或两者,也可能需要考虑不同类型的成像,如X射线、计算机断层扫描(CT)扫描、磁共振成像(MRI)、超声波和核医学成像。此外,外骨骼生产者或研究者,或两者,也可能希望进行神经成像,例如但不限于结构和功能及扩散MRI、脑磁图(MEG)、脑电图(EEG)、正电子发射断层扫描(PET),或近红外光谱(NIRS),以了解外骨骼对大脑的认知和神经生理学影响。 2.3 图2 是一个维恩图,描绘了用户(人类)、外骨骼和任务之间可能发生的不同交互。 互动包括: 图2 外骨骼性能交互图 2.3.1 人类- 例如,基线健康、生理和工作职责评估; 2.3.2 具有外骨骼的人- 例如,适合度、舒适度、体型变化、心理社会因素、认知负荷、训练水平、穿脱时间和安全性; 2.3.3 人工执行任务- 例如,效率、速度、敏捷性、力量、强度、质量、机动性、任务时间和安全性; 2.3.4 外骨骼执行任务的人- 例如,效率、速度、敏捷性、力量、强度、质量、机动性、任务时间、可靠性和安全性; 2.3.5 外骨骼(Exo)- 例如,失效模式和影响分析;材料强度和质量;安全系数;网络安全;形态特征,如大小、形状和重量;卫生清洁;诚实正直准备就绪和耐久性; 2.3.6 外骨骼执行任务- 例如,用于测试平均无故障时间、环境条件、疲劳和断裂、功率使用或与其他设备的兼容性的自动设置; 2.3.7 任务- 用户执行的职业或娱乐活动目录; 2.3.8 组织(Org)- 用户执行任务的框架(例如,家庭、办公室和医院,用户应适应其组织); 2.3.9 工具/设备- 为用户执行工作任务而提供的所有技术手段、原材料和产品。用户使用不同类型的工具,无论是私人的、专业的还是医疗的;和 2.3.10 环境(Env)- 构成外骨骼使用地的物理和社会氛围。用户执行任务时事件发生时的外部环境(例如,室内、室外、受限空间(例如,储罐)、肮脏、潮湿、炎热、寒冷、干燥、潮湿和打滑)。 2.4 该方法指出了雇主/用户应考虑的事项,即与具有外骨骼的人相比,哪些工作更适合人类。 基于这些结果,可以使用人机工程学评估决策图进行人体外骨骼评估,以确定与任务相关的外骨骼效能。从那里,人、外骨骼和任务被集成到组织(如果适用,基于领域)、工具/设备和使用环境中。此外,在进行评估时,请参阅使用环境影响外骨骼测试方法记录环境条件的实践。 2. 2.5 根据外骨骼的使用环境(医疗、工业、军事、急救和娱乐),有必要考虑这些互补特征,以更好地整合外骨骼。
1.1 This practice provides a recommended approach and a set of options for assessing one or more specific ergonomic parameters with respect to human users of exoskeletons. 1.2 This practice provides functional ergonomic criteria to consider for the design, production, and evaluation of exoskeletons within the domains of industry, military, medical, first responders, and recreational. When designing exoskeletons, natural unassisted human kinematics and kinetics, as well as the resulting strain and fatigue experienced by the user should be salient design parameters. Any changes in the natural unassisted human kinematics and kinetics may impact the exoskeleton’s effectiveness in augmenting user performance. Therefore, the defining principle of this practice is to establish objective measures that can be selected from to assess human kinematics and kinetics, as well as the resulting strain and fatigue experienced by the user within the task context of the exoskeleton’s end use application. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 2.1 This practice describes what measure should be performed during the near (hours/days), mid (days/weeks), and far (months/years) stages of exoskeleton evaluation ( Fig. 1 ). The functional conditions and metrics with respect to each task method are assessed from the body area(s) impacted by the exoskeleton (for example, upper body, lower body, or both). These may be within as well as distant to the body areas impacted by the exoskeleton (for example, an upper body exoskeleton may have impacts on the trunk and spine). Desired effects as well as unintended encumbrances to the user’s body are important considerations. The evaluation will occur within the context relevant to the end-use application of the exoskeleton’s implementation. This practice pertains to the industry, military, medical, first responders, and recreational domains, but other domains may arise in the future and will need to be considered. Each domain is unique unto itself; however, the task methods and metrics collected may be unique or overlap across any number of user domains. FIG. 1 Exoskeleton Assessment Decision Tree 2.2 Task methods and their metrics are either administered in a laboratory environment, field environment, or both laboratory and field environments. Where not otherwise specified, patient functional outcome measures and pain are key metrics that should be considered for testing performed in the medical domain. Exoskeleton producers or researchers, or both, may also want to consider different types of imaging such as X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI), ultrasound, and nuclear medicine imaging. Additionally, exoskeleton producers or researchers, or both, may also wish to carry out neuroimaging such as, but not limited to, structural and functional and diffusion MRI, magnetoencephalography (MEG), electroencephalography (EEG), positron emission tomography (PET), or near infrared spectroscopy (NIRS) to understand the cognitive and neurophysiological impacts that exoskeletons have on the brain. 2.3 Fig. 2 is a Venn diagram that portrays the distinct interactions that may transpire between the user (human), exoskeleton, and task. The interactions are: FIG. 2 Exoskeleton Performance Interaction Diagram 2.3.1 Human— For example, baseline health, physiology, and job duty assessment; 2.3.2 Human with an Exoskeleton— For example, fit, comfort, physical size changes, psychosocial considerations, cognitive load, training level, donning/doffing time, and safety; 2.3.3 Human Performing Tasks— For example, efficiency, speed, agility, power, strength, quality, mobility, time on task, and safety; 2.3.4 Human with an Exoskeleton Performing Tasks— For example, efficiency, speed, agility, power, strength, quality, mobility, time on task, reliability, and safety; 2.3.5 Exoskeleton (Exo)— For example, failure mode and effects analysis; material strength and quality; safety factors; cybersecurity; morphological characteristics such as size, shape, and weight; hygiene; cleanliness; integrity; readiness; and durability; 2.3.6 Exoskeleton Performing Tasks— For example, an automated setup to test mean time between failure, environmental conditions, fatigue and fracture, power usage, or compatibility with other equipment; 2.3.7 Tasks— A catalog of events either occupational or recreational that a user performs; 2.3.8 Organization (Org)— The framework within which the user carries out tasks (for example, home, office, and hospital—the users shall adapt to their organization); 2.3.9 Tools/Equipment— All the technological means, raw materials, and products made available to the user to conduct a work task. The user uses different kinds of tools, no matter what the context, be it private, professional, or medical; and 2.3.10 Environment (Env)— Constitutes the physical and social atmosphere of the place of the exoskeleton’s use. The external context at the time of the events when the user carries out the task (for example, indoors, outdoors, constrained space (for example, tanks), dirty, humid, hot, cold, dry, wet, and slippery). 2.4 This methodology indicates considerations that employers/users should use to govern which jobs are more suited to just humans versus humans with exoskeletons. Based on those results, human exoskeleton assessments can be performed using the ergonomic assessment decision chart to determine exoskeleton efficacy with respect to the task(s). From there, the human, exoskeleton, and task(s) are integrated into the organization (where applicable based on domain), tools/equipment, and environment of utilization. Furthermore, when conducting an assessment, please see Practice for Documenting Environmental Conditions for Utilization with Exoskeleton Test Methods for environmental ramifications. 2 2.5 Depending on the context in which the exoskeleton is used (medical, industrial, military, first responders, and recreational), it is necessary to take into account these complementary characteristics to integrate the exoskeletons better.
分类信息
关联关系
研制信息
归口单位: F48.02
相似标准/计划/法规