首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E3125-17
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating the Point-to-Point Distance Measurement Performance of Spherical Coordinate 3D Imaging Systems in the Medium Range 标准测试方法 用于评估中等球面坐标三维成像系统的点对点距离测量性能
发布日期: 2017-10-01
1.1 本测试方法涵盖了中等范围内基于激光、扫描、飞行时间、单探测器3D成像系统的性能评估,并为此类系统之间的比较提供了基础。本标准最适用于能够生成感兴趣对象的点云表示的球坐标三维成像系统。特别是,本标准规定了评估导出点到导出点的要求和测试程序- 点距离测量在这些系统的整个工作量中的性能。尽管本标准中描述的测试可用于非球坐标三维成像系统,但测试方法可能不一定对这些仪器内的误差源敏感。 1.2 通过将导出点对之间的测量距离误差与制造商规定的最大允许误差(MPE)进行比较来评估系统性能。在本标准中,导出了- 点是使用目标表面上的多个测量点(例如球体的中心)计算的点。在本标准的其余部分中,术语点到点距离是指两个导出点之间的距离。 1.3 术语“中程”是指能够在2米至150米范围内的至少一部分内运行的系统。“飞行时间系统”包括基于相位的、脉冲的和啁啾的系统。本文件中的“标准”一词是指符合术语的文件标准 E284年 . 1.4 该测试方法可用于一次评估给定条件下的受试仪器(IUT),也可用于多次评估IUT在各种条件下的性能(例如,表面反射系数、环境条件)。 1.5 本标准中的所有计算和结果均采用国际单位制。 1.6 本测试方法不旨在取代用于仪器校准或补偿的更深入方法,特定测量应用可能需要其他测试和分析。 1.7 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 在实践中讨论了安全使用三维成像系统的一些方面 E2641 . 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 本标准提供了一种测试方法,用于获得中程3D成像系统的点到点距离测量误差。该测试方法的结果可用于评估或验证中程3D成像系统的点到点距离测量性能。该测试方法的结果也可用于比较不同仪器的性能。 4.2 本文件旨在提供对仪器误差源敏感的测试程序。 通过应用本测试方法获得的IUT的点到点距离测量性能可能不同于在某些实际条件下IUT的点到点距离测量性能。例如,物体几何形状、纹理、表面反射率因子和温度,以及颗粒物、热梯度、大气压力、湿度、环境中的环境照明、机械振动和风引起的测试设置不稳定性都会影响该点- 点间距离测量性能(参见 附录X10 讨论热效应)。满足第节所述要求的衍生点,如合适球体或平板目标的中心 7. 提供了一个可靠的空间点,该点受目标相关特性(如几何体、表面纹理、颜色和反射率)的影响最小。可能需要进行本标准中未描述的其他试验,以评估这些影响因素对点的贡献- 到点距离测量。 4.3 根据制造商和用户之间的相互协议,可出于仪器验收、保修或合同目的进行测试。IUT根据制造商提供的规范、额定条件和技术文件进行测试。 4.4 为了理解宫内节育器的行为且不影响保修,可根据需要修改本试验,以评估在制造商额定条件外但在制造商限制条件内的宫内节育器点到点距离测量性能。 4.5 制造商可以为不同的额定条件集提供不同的性能规范值,例如,在一组更严格的环境条件下,可以指定更好的点到点距离测量性能。建议用户,IUT的性能可能在其他操作模式、其他仪器设置或额定条件之外有显著差异,并应咨询制造商,以获取最能代表计划使用的操作模式和仪器设置的性能规范。 4.6 本标准旨在扩展和补充试验方法中所述的测距试验 E2938年 . While试验方法 E2938年 本标准具体描述了任何中程3D成像系统测距能力的评估,本标准提供了测试程序,以评估由于特定类型系统(即球坐标3D成像系统)的角度和测距误差的综合影响而产生的点到点距离误差。
1.1 This test method covers the performance evaluation of laser-based, scanning, time-of-flight, single-detector 3D imaging systems in the medium-range and provides a basis for comparisons among such systems. This standard best applies to spherical coordinate 3D imaging systems that are capable of producing a point cloud representation of an object of interest. In particular, this standard establishes requirements and test procedures for evaluating the derived-point to derived-point distance measurement performance throughout the work volume of these systems. Although the tests described in this standard may be used for non-spherical coordinate 3D imaging systems, the test method may not necessarily be sensitive to the error sources within those instruments. 1.2 System performance is evaluated by comparing measured distance errors between pairs of derived-points to the manufacturer-specified, maximum permissible errors (MPEs). In this standard, a derived-point is a point computed using multiple measured points on the target surface (such as the center of a sphere). In the remainder of this standard, the term point-to-point distance refers to the distance between two derived-points. 1.3 The term “medium-range” refers to systems that are capable of operating within at least a portion of the ranges from 2 m to 150 m. The term “time-of-flight systems” includes phase-based, pulsed, and chirped systems. The word “standard” in this document refers to a documentary standard in accordance with Terminology E284 . 1.4 This test method may be used once to evaluate the Instrument Under Test (IUT) for a given set of conditions or it may be used multiple times to assess the performance of the IUT for various conditions (for example, surface reflectance factors, environmental conditions). 1.5 SI units are used for all calculations and results in this standard. 1.6 This test method is not intended to replace more in-depth methods used for instrument calibration or compensation, and specific measurement applications may require other tests and analyses. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some aspects of the safe use of 3D imaging systems are discussed in Practice E2641 . 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 This standard provides a test method for obtaining the point-to-point distance measurement errors for medium-range 3D imaging systems. The results from this test method may be used to evaluate or to verify the point-to-point distance measurement performance of medium-range 3D imaging systems. The results from this test method may also be used to compare performance among different instruments. 4.2 The purpose of this document is to provide test procedures that are sensitive to instrument error sources. The point-to-point distance measurement performance of the IUT obtained by the application of this test method may be different from the point-to-point distance measurement performance of the IUT under some real-world conditions. For example, object geometry, texture, surface reflectance factor, and temperature, as well as particulate matter, thermal gradients, atmospheric pressure, humidity, ambient lighting in the environment, mechanical vibrations, and wind induced test setup instability will affect the point-to-point distance measurement performance (see Appendix X10 for a discussion on thermal effects). A derived-point such as the center of a suitable sphere or plate target that meets the requirements described in Section 7 provides a reliable point in space that is minimally impacted by target-related properties such as geometry, surface texture, color, and reflectivity. Additional tests not described in this standard may be required to assess the contribution of these influence factors on point-to-point distance measurements. 4.3 The test may be carried out for instrument acceptance, warranty or contractual purposes by mutual agreement between the manufacturer and the user. The IUT is tested in accordance with manufacturer-supplied specifications, rated conditions, and technical documentation. 4.4 For the purposes of understanding the behavior of the IUT and without warranty implications, this test may be modified as necessary to evaluate the point-to-point distance measurement performance of the IUT outside the manufacturer’s rated conditions, but within the manufacturer’s limiting conditions. 4.5 The manufacturer may provide different performance specification values for different sets of rated conditions, for example, better point-to-point distance measurement performance might be specified under a set of more restrictive environmental conditions. The user is advised that the IUT’s performance may differ significantly in other modes of operation, with other instrument settings, or outside the rated conditions, and should consult the manufacturer for performance specifications of the operating mode and instrument settings that best represent the planned usage. 4.6 This standard is intended to expand and complement the ranging tests described in Test Method E2938 . While Test Method E2938 specifically describes the evaluation of the ranging capability of any medium-range 3D imaging system, this standard provides test procedures to evaluate the point-to-point distance error due to the combined effect from angular and ranging errors of a particular type of these systems, that is, spherical coordinate 3D imaging systems.
分类信息
关联关系
研制信息
归口单位: E57.20
相似标准/计划/法规
现行
ASTM D4230-20
Standard Test Method for Measuring Humidity with Cooled-Surface Condensation (Dew-Point) Hygrometer
用冷却表面冷凝(露点)湿度计测量湿度的标准试验方法
2020-03-01
现行
ASTM D2029-97(2017)
Standard Test Methods for Water Vapor Content of Electrical Insulating Gases by Measurement of Dew Point
通过测量露点确定电气绝缘气体水蒸汽含量的标准试验方法
2017-01-01
现行
ASTM D8458-22
Standard Test Method for Evaluation of Fatigue Performance of Asphalt Mixtures Using the Three-Point Bending Cylinder (3PBC) Test
使用三点弯曲圆柱(3PBC)试验评估沥青混合料疲劳性能的标准试验方法
2022-12-15
现行
ASTM D1142-95(2021)
Standard Test Method for Water Vapor Content of Gaseous Fuels by Measurement of Dew-Point Temperature
用露点温度测量法测定气体燃料中水蒸气含量的标准试验方法
2021-07-01
现行
ESD STM11.13-2021
ESD Association Standard Test Method for the Protection of Electrostatic Discharge Susceptible Items - Two-Point Resistance Measurement
静电放电敏感物品保护的ESD协会标准试验方法.两点电阻测量
2021-10-28
现行
ASTM E637-22
Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure
根据传热理论和停滞点传热和压力的实验测量计算停滞焓的标准试验方法
2022-08-01
现行
ASTM E598-08(2020)
Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient, Null-Point Calorimeter
使用瞬态 零点热量计测量高能环境极端传热速率的标准测试方法
2020-11-01
现行
ASTM F2625-24
Standard Test Method for Measurement of Enthalpy of Fusion, Percent Crystallinity, and Melting Point of Ultra-High Molecular Weight Polyethylene by Means of Differential Scanning Calorimetry
用差示扫描量热法测量超高分子量聚乙烯的熔融焓、结晶度百分比和熔点的标准试验方法
2024-03-15
现行
YY/T 0815-2010
差示扫描量热法测定超高分子量聚乙烯熔化焓、结晶度和熔点
Standard test method for measurement of enthalpy of fusion,percent crystallinity,and melting point of ultra-high-molecular weight polyethylene by means of differential scanning calorimetry
2010-12-27
现行
ASTM C1350M-96(2019)
Standard Test Method for Measurement of Viscosity of Glass Between Softening Point and Annealing Range (Approximately 108 Pa·s to Approximately 1013 Pa·s) by Beam Bending (Metric)
在软化点和退火范围之间测量玻璃粘度的标准试验方法(约108Pa·;s到大约1013Pa和xb7;s) 通过梁弯曲(公制)
2019-08-01