首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2172-22
到馆提醒
收藏跟踪
购买正版
Standard Guide for Conducting Laboratory Soil Toxicity Tests with the Nematode <emph type="ital"> Caenorhabditis elegans</emph> 用线虫进行实验室土壤毒性试验的标准指南
发布日期: 2022-08-01
1.1 本指南涵盖了从土壤毒性试验中获取实验室数据以评估与土壤有关的化学品对线虫的不利影响的程序。本标准基于对指南的修改 图1676 这些方法旨在评估陆地系统短期试验中对线虫的致死或亚致死毒性影响。待测试土壤可能是( 1. )参考土壤或潜在有毒土壤场地;( 2. )掺有化合物的人工土壤、参考土壤或现场土壤;( 3. )用参考土壤稀释的现场土壤;或( 4. )用人工土壤稀释的现场或参考土壤。描述了物种的测试程序 秀丽隐杆线虫 (请参见 附录A1 ). 本指南中描述的方法也可用于对其他陆生物种进行土壤毒性试验,尽管可能需要进行修改。 1.2 以往研究总结- 使用自由生活的食菌土壤线虫进行初始土壤毒性测试 秀丽隐杆线虫 由Donkin和Dusenbery开发 ( 1. ) . 2. 开发了一种有效的回收 C、 秀丽的 从试验土壤中,该生物体被用来确定影响锌、镉、铜和铅毒性的因素 ( 2. ) Freeman等人通过减少土壤量和添加溶液体积,确定试验可接受性标准,并制定控制图,以铜作为参考毒物评估蠕虫健康,从而进一步完善了线虫生物测定法 ( 3. ) 最近,对两种天然土壤中硝酸盐和氯化物金属盐的毒理学效应进行了比较 ( 4. ) .LC50值 C、 秀丽的 暴露24小时- 人工土壤中镉、铜、锌、铅和镍的硝酸盐(见 附件A2 )发现与蚯蚓的LC50值相似, 胎儿艾森氏菌 ( 5. ) .将暴露时间增加到48小时导致LC50值大大降低 ( 6. ) 然而,较长的暴露时间需要添加食物,并导致高有机质土壤的回收率较低。对恢复方法的改进也用于转基因菌株 C、 秀丽的 用作土壤生物监测工具,评估土壤中金属暴露的亚致死效应 ( 7. ) 。使用 C、 秀丽的 在水生介质中,并可能被证明对评估土壤暴露有用 ( 8. ) . 1.3 由于特殊需要,可能有理由修改这些程序。 使用典型程序进行的试验结果可能无法与使用本指南的结果进行比较。比较使用这些程序的修改版本和未修改版本获得的结果,可能会提供有用的信息,说明对陆生蠕虫进行土壤毒性试验的新概念和程序。 1.4 用于确定土壤毒性的空间或时间分布的毒性试验现场收集的土壤的结果可根据对存活或亚致死终点的生物影响进行报告。当温度、pH值和土壤特性(例如粒径、有机物含量和粘土含量)等因素值得关注时,或当需要测试污水污泥等材料时,可使用这些程序进行适当修改,以进行土壤毒性测试。 这些方法也可能有助于进行生物累积试验。 1.5 毒性试验结果( 1. )实验性添加到人工土壤、参考土壤或现场土壤中的材料(例如化学品或废物混合物)( 2. )用参考土壤稀释的现场土壤,以及( 3. )用人工土壤稀释的现场或参考土壤,以产生一系列浓度,可根据LC50(半致死浓度)和EC50(中间效应浓度)进行报告。 1.6 本指南安排如下: 范围 1. 参考文件 2. 术语 3. 指南摘要 4. 意义和用途 5. 干扰 6. 仪器 7. 安全预防措施 8. 土壤 9 测试有机体 10 程序 11 分析方法 12 试验的可接受性 13 结果的计算 14 汇报 15 附件 答:。 秀丽隐杆线虫 答2:。 人工土壤成分 工具书类 1.7 以国际单位表示的数值应视为标准值。 1.8 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 虽然本指南中包含了一些安全注意事项,但包含进行土壤毒性试验所需的所有安全要求超出了本标准的范围。第节给出了具体的预防说明 8. . 1.9 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 5.1 土壤毒性试验提供了与土壤有关的化学品对陆地生物的毒性和生物有效性的信息。线虫作为土壤动物群的重要成员,具有许多特征,使其成为评估潜在危险土壤的合适有机体。细菌性食饵线虫,例如 C、 秀丽的 以土壤微生物为食,有助于有机物的分解。它们对土壤生态系统中关键养分的循环和降解也极为重要 ( 9 ) 土壤线虫也可作为动物群和微生物群(如土壤线虫真菌)的猎物和营养来源 ( 10 ) 线虫等土壤无脊椎动物数量的重大变化,无论是作为食物来源还是作为在营养能量转移和营养循环中正常运作的生物体,都可能对整个陆地系统产生严重的不利生态影响。 5.2 在评估材料对陆生生物的危害时,土壤测试结果可能是一个重要的考虑因素。 5.3 土壤试验可用于确定土壤毒性的时间或空间分布。试验方法可用于检测毒性的水平和垂直梯度。 5.4 土壤试验结果可用于比较不同物种的敏感性。 5.5 通过改变土壤特性,如pH值、粘土含量和有机材料,可以了解这些参数对毒性的影响。 5.6 土壤测试的结果可能有助于预测野外条件下陆生生物可能发生的影响。 5.6.1 实地调查可用于对现场内或现场之间的生物影响进行定性或定量评估。 5.6.2 评估生物效应的土壤调查通常是对生物、化学、地质和水文条件进行更全面分析的一部分。如果同时从同一地点的同一抓取土壤子样本进行实验室测试、地球化学分析和群落结构,则可以改善统计相关性并降低成本。 5.7 土壤毒性试验是决定受污染陆地场地所需补救行动程度的重要工具。
1.1 This guide covers procedures for obtaining laboratory data to evaluate the adverse effects of chemicals associated with soil to nematodes from soil toxicity tests. This standard is based on a modification to Guide E1676 . The methods are designed to assess lethal or sublethal toxic effects on nematodes in short-term tests in terrestrial systems. Soils to be tested may be ( 1 ) references soils or potentially toxic soil sites; ( 2 ) artificial, reference, or site soils spiked with compounds; ( 3 ) site soils diluted with reference soils; or ( 4 ) site or reference soils diluted with artificial soil. Test procedures are described for the species Caenorhabditis elegans (see Annex A1 ). Methods described in this guide may also be useful for conducting soil toxicity tests with other terrestrial species, although modifications may be necessary. 1.2 Summary of Previous Studies— Initial soil toxicity testing using the free-living, bacterivorous soil nematode Caenorhabditis elegans was developed by Donkin and Dusenbery ( 1 ) . 2 Following the development of an effective method of recovery of C. elegans from test soils, the organism was used to identify factors that affect the toxicity of zinc, cadmium, copper, and lead ( 2 ) . Freeman et al. further refined the nematode bioassay by decreasing the quantity of soil and spiking solution volumes, determining test acceptability criteria, and developing control charts to assess worm health using copper as a reference toxicant ( 3 ) . More recently, the toxicological effects of nitrate and chloride metallic salts in two natural soils were compared ( 4 ) . LC50 values for C. elegans exposed for 24-h to nitrate salts of cadmium, copper, zinc, lead and nickel in an artificial soil (see Annex A2 ) were found to be similar to LC50 values for the earthworm, Eisenia fetida ( 5 ) . Increasing the exposure time to 48-h resulted in much lower LC50 values ( 6 ) . However, longer exposure times necessitate the addition of food and lead to lower recovery percentages in soils high in organic matter. A modification of the recovery method has also been used with a transgenic strain of C. elegans used as a soil biomonitoring tool to assess sub-lethal effects of metal exposures in soil ( 7 ) . A variety of sub-lethal endpoints have been developed using C. elegans in aquatic media and may prove useful for assessing soil exposures ( 8 ) . 1.3 Modification of these procedures might be justified by special needs. The results of tests conducted using typical procedures may not be comparable to results using this guide. Comparison of results obtained using modified and unmodified versions of these procedures might provide useful information concerning new concepts and procedures for conducting soil toxicity tests with terrestrial worms. 1.4 The results from field-collected soils used in toxicity tests to determine a spatial or temporal distribution of soil toxicity may be reported in terms of the biological effects on survival or sublethal endpoints. These procedures can be used with appropriate modifications to conduct soil toxicity tests when factors such as temperature, pH, and soil characteristics (for example, particle size, organic matter content, and clay content) are of interest or when there is a need to test such materials as sewage sludge. These methods might also be useful for conducting bioaccumulation tests. 1.5 The results of toxicity tests with ( 1 ) materials (for example, chemicals or waste mixtures) added experimentally to artificial soil, reference soils, or site soils, ( 2 ) site soils diluted with reference soils, and ( 3 ) site or reference soils diluted with artificial soil, so as to create a series of concentrations, may be reported in terms of an LC50 (median lethal concentration) and sometimes an EC50 (median effect concentration). 1.6 This guide is arranged as follows: Scope 1 Referenced Documents 2 Terminology 3 Summary of Guide 4 Significance and Use 5 Interferences 6 Apparatus 7 Safety Precautions 8 Soil 9 Test Organism 10 Procedure 11 Analytical Methodology 12 Acceptability of Test 13 Calculation of Results 14 Report 15 Annexes A1. Caenorhabditis elegans A2. Artificial Soil Composition References 1.7 The values stated in SI units are to be regarded as the standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. While some safety considerations are included in this guide, it is beyond the scope of this standard to encompass all safety requirements necessary to conduct soil toxicity tests. Specific precautionary statements are given in Section 8 . 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Soil toxicity tests provide information concerning the toxicity and bioavailability of chemicals associated with soils to terrestrial organisms. As important members of the soil fauna, nematodes have a number of characteristics that make them appropriate organisms for use in the assessment of potentially hazardous soils. Bacterial-feeding nematodes such as C. elegans feed on soil microbes and contribute to the breakdown of organic matter. They are also of extreme importance in the cycling and degradation of key nutrients in soil ecosystems ( 9 ) . Soil nematodes also serve as a source of prey and nutrients for fauna and microflora such as soil nematophagous fungi ( 10 ) . A major change in the abundance of soil invertebrates such as nematodes, either as a food source or as organisms functioning properly in trophic energy transfer and nutrient cycling, could have serious adverse ecological effects on the entire terrestrial system. 5.2 Results from soil tests might be an important consideration when assessing the hazards of materials to terrestrial organisms. 5.3 The soil test might be used to determine the temporal or spatial distribution of soil toxicity. Test methods can be used to detect horizontal and vertical gradients in toxicity. 5.4 Results of soil tests could be used to compare the sensitivities of different species. 5.5 An understanding of the effect of these parameters on toxicity may be gained by varying soil characteristics such as pH, clay content, and organic material. 5.6 Results of soil tests may be useful in helping to predict the effects likely to occur with terrestrial organisms in field situations. 5.6.1 Field surveys can be designed to provide either a qualitative or quantitative evaluation of biological effects within a site or among sites. 5.6.2 Soil surveys evaluating biological effects are usually part of more comprehensive analyses of biological, chemical, geological, and hydrographic conditions. Statistical correlation can be improved and costs reduced if subsamples of soil for laboratory tests, geochemical analyses, and community structure are taken simultaneously from the same grab of the same site. 5.7 Soil toxicity tests can be an important tool for making decisions regarding the extent of remedial action necessary for contaminated terrestrial sites.
分类信息
关联关系
研制信息
归口单位: E50.47
相似标准/计划/法规
现行
ASTM E2455-22
Standard Guide for Conducting Laboratory Toxicity Tests with Freshwater Mussels
用淡水贻贝进行实验室毒性试验的标准指南
2022-04-01
现行
ASTM E1963-22
Standard Guide for Conducting Terrestrial Plant Toxicity Tests
进行陆地植物毒性试验的标准指南
2022-08-01
现行
ASTM E1218-21
Standard Guide for Conducting Static Toxicity Tests with Microalgae
用微藻进行静态毒性试验的标准指南
2021-11-01
现行
ASTM E1611-21
Standard Guide for Conducting Sediment Toxicity Tests with Polychaetous Annelids
用多毛环节动物进行沉积物毒性试验的标准指南
2021-11-01
现行
ASTM E2591-22
Standard Guide for Conducting Whole Sediment Toxicity Tests with Amphibians
用两栖动物进行全沉积物毒性试验的标准指南
2022-01-01
现行
ASTM G162-23
Standard Practice for Conducting and Evaluating Laboratory Corrosion Tests in Soils
土壤中进行和评价实验室腐蚀试验的标准实施规程
2023-11-01
现行
ASTM E1191-03A(2023)e1
Standard Guide for Conducting Life-Cycle Toxicity Tests with Saltwater Mysids
用盐水粘虫进行生命周期毒性试验的标准指南
2023-01-01
现行
ASTM E1197-12(2021)
Standard Guide for Conducting a Terrestrial Soil-Core Microcosm Test
进行地面土壤核心微观测试的标准指南
2021-01-01
现行
ASTM E1563-21a
Standard Guide for Conducting Short-Term Chronic Toxicity Tests with Echinoid Embryos
用棘球蚴胚胎进行短期慢性毒性试验的标准指南
2021-11-01
现行
ASTM E729-23e1
Standard Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians
用鱼类、大型无脊椎动物和两栖动物对试验材料进行急性毒性试验的标准指南
2023-01-01
现行
ASTM E1676-12(2021)
Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm Eisenia Fetida and the Enchytraeid Potworm Enchytraeus albidus
用蚯蚓进行实验室土壤毒性或生物累积试验的标准指南
2021-01-01
现行
ASTM E1241-22
Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes
鱼类早期毒性试验的标准指南
2022-04-01
现行
ASTM E1562-22
Standard Guide for Conducting Acute, Chronic, and Life-Cycle Aquatic Toxicity Tests with Polychaetous Annelids
用多毛环节动物进行急性、慢性和生命周期水生毒性试验的标准指南
2022-01-01
现行
ASTM E1192-23
Standard Guide for Conducting Acute Toxicity Tests on Aqueous Ambient Samples and Effluents with Fishes, Macroinvertebrates, and Amphibians
用鱼、大型无脊椎动物和两栖动物对水环境样品和流出物进行急性毒性试验的标准指南
2023-01-01
现行
ASTM E1193-20
Standard Guide for Conducting Daphnia magna Life-Cycle Toxicity Tests
大型水蚤生命周期毒性试验的标准指南
2020-12-01
现行
ASTM E1415-22
Standard Guide for Conducting Static Toxicity Tests With Lemna gibba G3
Lemna gibbaG3进行静态毒性试验的标准指南
2022-11-01
现行
ASTM E1295-22
Standard Guide for Conducting Three-Brood, Renewal Toxicity Tests with Ceriodaphnia dubia
用杜氏石首鱼进行三窝更新毒性试验的标准指南
2022-01-01
现行
ASTM E724-21
Standard Guide for Conducting Static Short-Term Chronic Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs
从四种咸水双壳类软体动物胚胎开始进行静态短期慢性毒性试验的标准指南
2021-01-15