首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1226-19
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Explosibility of Dust Clouds 尘云爆炸性的标准试验方法
发布日期: 2019-12-15
1.1 意图本试验方法的目的是提供标准试验方法,以两种方式表征尘云的“爆炸性”,首先通过确定粉尘是否“可爆炸”,即分散在空气中的尘云能够传播爆燃,这可能导致闪火或爆炸;或者,如果是可爆炸的,则确定“可爆炸性”的程度,即以粉尘爆炸性参数、最大爆炸压力、, P 最大值 ; 最大升压速率( dP/dt ) 最大值 ; 和爆炸指数, K 圣 . 1.2 局限性应用本标准方法获得的结果仅适用于分散尘云的某些燃烧特性。 不应从其他形式或条件下粉尘燃烧特性的相关结果中推断(例如,尘云的点火温度或火花点火能量、热表面粉尘层的点火特性、加热环境中大块粉尘的点火等) 1.3 使用目的是将通过应用本试验获得的结果用作考虑其他相关风险因素的粉尘危害分析(DHA)的元素;当与本领域技术人员批准或认可的设计方法结合使用时,在防爆系统规范中(例如,参见NFPA 68、NFPA 69和NFPA 652)。 注1: 历史上,使用1.2升哈特曼装置对最大压力和最大压力上升率的爆燃参数进行了评估。试验方法 E789 描述该方法的已撤销。不建议在防爆系统设计中使用从试验方法获得的数据。 1.4 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本试验方法提供了进行实验室试验以评估粉尘爆燃参数的程序。 5.2 通过本试验方法得出的数据可与NFPA 68、ISO 6184/1或VDI 3673中发布的列线图和方程一起用于确定爆燃通风口的尺寸。 5.3 通过该测试技术获得的值特定于所测试的样品和使用的方法,不被视为固有材料常数。 5.4 对于低浓度粉尘 K 圣 在20-L和1-m的试验中观察到数值和差异 3. 钱伯斯。如试验方法中所述,强点火器可能会使20升燃烧室超速 E1515 和参考文献 ( 1- 4. ) . 8. 相反,最近的测试表明,一些金属粉尘可能容易在20-L腔室中欠驱动,表现出显著的降低 K 圣 1-m中的值 3. 室 ( 5. ) . 裁判 ( 6. ) 提供支持计算,表明至少1米的试验容器 3. 对于火焰温度异常高的燃烧粉尘云,需要获得最大爆炸指数。 因此,在上述两种超速驾驶和减速驾驶情况下,建议在1米的距离内进行测试 3. 或更大的校准试验容器,以准确测量粉尘爆炸性参数。 注5: 裁判 ( 2. ) 得出结论,灰尘与 K 圣 当在配有10000-J点火器的20-L室中测量时,低于45 bar m/s的值在1-m室中测试时可能不会爆炸 3. 装有10000-J点火器的燃烧室。裁判 ( 2. ) 未公布的测试也表明,在某些情况下 K 圣 在20-L室中测量的值可能低于在1-m室中测量的值 3. 室参考文献 ( 1. ) 和 ( 3. ) 发现对于某些粉尘,有必要在20小时内使用较低的点火能量- L室,以匹配1-m中的MEC或MIC测试数据 3. 室如果灰尘可测量(非零) P 最大值 和 K 圣 5000或10的值 000-J点火器,在20-L室中测试,但没有可测量的 P 最大值 和 K 圣 当使用小于或等于2500 J的点火源进行测试时,在较大的燃烧室(如1-m)中测试材料可能会有所帮助 3. 燃烧室使用至少10000-J点火源进一步表征材料在尘云形式下的爆炸性。
1.1 Purpose. The purpose of this test method is to provide standard test methods for characterizing the “explosibility” of dust clouds in two ways, first by determining if a dust is “explosible,” meaning a cloud of dust dispersed in air is capable of propagating a deflagration, which could cause a flash fire or explosion; or, if explosible, determining the degree of “explosibility,” meaning the potential explosion hazard of a dust cloud as characterized by the dust explosibility parameters, maximum explosion pressure, P max ; maximum rate of pressure rise, ( dP/dt ) max ; and explosibility index, K St . 1.2 Limitations. Results obtained by the application of the methods of this standard pertain only to certain combustion characteristics of dispersed dust clouds. No inference should be drawn from such results relating to the combustion characteristics of dusts in other forms or conditions (for example, ignition temperature or spark ignition energy of dust clouds, ignition properties of dust layers on hot surfaces, ignition of bulk dust in heated environments, etc.) 1.3 Use. It is intended that results obtained by application of this test be used as elements of a dust hazard analysis (DHA) that takes into account other pertinent risk factors; and in the specification of explosion prevention systems (see, for example NFPA 68, NFPA 69, and NFPA 652) when used in conjunction with approved or recognized design methods by those skilled in the art. Note 1: Historically, the evaluation of the deflagration parameters of maximum pressure and maximum rate of pressure rise has been performed using a 1.2-L Hartmann Apparatus. Test Method E789 , which describes this method, has been withdrawn. The use of data obtained from the test method in the design of explosion protection systems is not recommended. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method provides a procedure for performing laboratory tests to evaluate deflagration parameters of dusts. 5.2 The data developed by this test method may be used for the purpose of sizing deflagration vents in conjunction with the nomographs and equations published in NFPA 68, ISO 6184/1, or VDI 3673. 5.3 The values obtained by this testing technique are specific to the sample tested and the method used and are not to be considered intrinsic material constants. 5.4 For dusts with low K St values, discrepancies have been observed between tests in 20-L and 1-m 3 chambers. A strong ignitor may overdrive a 20-L chamber, as discussed in Test Method E1515 and Refs ( 1- 4 ) . 8 Conversely, more recent testing has shown that some metal dusts can be prone to underdriving in the 20-L chamber, exhibiting significantly lower K St values than in a 1-m 3 chamber ( 5 ) . Ref ( 6 ) provides supporting calculations showing that a test vessel of at least 1-m 3 of volume is necessary to obtain the maximum explosibility index for a burning dust cloud having an abnormally high flame temperature. In these two overdriving and underdriving scenarios described above, it is therefore recommended to perform tests in 1-m 3 or larger calibrated test vessels in order to measure dusts explosibility parameters accurately. Note 5: Ref ( 2 ) concluded that dusts with K St values below 45 bar m/s when measured in a 20-L chamber with a 10 000-J ignitor, may not be explosible when tested in a 1-m 3 chamber with a 10 000-J ignitor. Ref ( 2 ) and unpublished testing has also shown that in some cases the K St values measured in the 20-L chamber can be lower than those measured in the 1-m 3 chamber. Refs ( 1 ) and ( 3 ) found that for some dusts, it was necessary to use lower ignition energy in the 20-L chamber in order to match MEC or MIC test data in a 1-m 3 chamber. If a dust has measurable (nonzero) P max and K St values with a 5000 or 10 000-J ignitor when tested in a 20-L chamber but no measurable P max and K St values with tests conducted using an ignition source less than or equal to 2500 J, it may be helpful to test the material in a larger chamber such as a 1-m 3 chamber using at least a 10 000-J ignition source to further characterize the material’s explosibility in dust cloud form.
分类信息
关联关系
研制信息
归口单位: E27.05
相似标准/计划/法规
现行
UNE 22334-1990
COAL DUST EXPLOSIBILITY. TEST METHOD FOR DETERMINING THE MINIMUM IGNITION TEMPERATURE IN A CLOUD
煤尘爆炸性 测定云中最低点火温度的试验方法
1990-05-18
现行
ASTM E1491-06(2019)
Standard Test Method for Minimum Autoignition Temperature of Dust Clouds
尘云最低自燃温度的标准试验方法
2019-02-15
现行
ASTM E2019-03(2019)
Standard Test Method for Minimum Ignition Energy of a Dust Cloud in Air
空气中灰尘云cb5f的最小点火0716能量的0716标准测试方法
2019-02-15
现行
ASTM E1515-14(2022)
Standard Test Method for Minimum Explosible Concentration of Combustible Dusts
可燃粉尘最小爆炸浓度的标准试验方法
2022-06-01
现行
ASTM E2931-13(2019)
Standard Test Method for Limiting Oxygen (Oxidant) Concentration of Combustible Dust Clouds
可燃尘云极限氧(氧化剂)浓度的标准试验方法
2019-02-15
现行
UNE 22335-1992
COAL DUST EXPLOSIBILITY. TEST METHOD FOR DETERMINING THE MINIMUM EXPLOSIVE CONCENTRATION IN THE HARTMANN TUBE.
煤尘爆炸性 测定哈特曼管中最小爆炸物浓度的试验方法
1992-07-08
现行
VDI 2263 Sheet 1
Dust fires and dust explosions; hazards, assessment, protective measures; test methods for the determination of the safety characteristic of dusts
粉尘火灾和粉尘爆炸;危害、评估、防护措施;测定粉尘安全特性的试验方法
1990-05-01
现行
BS EN ISO/IEC 80079-20-2-2016
Explosive atmospheres-Material characteristics. Combustible dusts test methods
爆炸性环境
2018-04-06
现行
UNE 22333-1990
COAL DUST EXPLOSIBILITY. METHOD FOR SAMPLE PREPARATION AND PRELIMINARY TEST
煤尘爆炸性 样品制备和初步试验方法
1990-05-18
现行
UNE 22336-1996
COAL DUST EXPLOSIBILITY. TEST METHOD FOR DETERMINING THE MINIMUM IGNITION ENERGY.
煤尘爆炸性 测定最小点火能量的试验方法
1996-11-22
现行
GOST 7140-1998
Вещества взрывчатые промышленные. Методы испытаний в метановоздушной и пылевоздушной смесях
工业炸药 甲烷空气和粉尘空气混合物的测试方法
1998-05-28
现行
UNE 22339-1996
COAL DUST EXPLOSIVITY. TEST METHOD FOR DETERMINING THE MINIMUM EXPLOSIVE CONCENTRATION IN THE 20 l SPHERICAL CHAMBER.
煤尘爆炸性 测定20L球形室中最小爆炸物浓度的试验方法
1996-11-22
现行
AS ISO/IEC 80079.20.2-2016
Explosive atmospheres, Part 20.2: Material characteristics - Combustible dusts test methods
爆炸性环境.第20.2部分:材料特性.可燃粉尘试验方法
2016-11-25
现行
UNE 22330-1992
COAL DUST EXPLOSIBILITY. TEST METHOD FOR DETERMINING THE MINIMUM IGNITION TEMPERATURE IN A LAYER.
煤尘爆炸性 测定一层中最低点火温度的试验方法
1992-07-08
现行
GB/T 3836.12-2019
爆炸性环境 第12部分:可燃性粉尘物质特性 试验方法
Explosive atmospheres—Part 12:Material characteristics for combustible dusts—Test methods
2019-12-31
现行
UNE 22338-1996
COAL DUST EXPLOSIBILITY. TEST METHOD FOR DETERMINING THE EXPLOSIONS PRESSURE AND THE RATE OF PRESSURE RISE IN THE 20 L SPHERICAL CHAMBER.
煤尘爆炸性 测定20L球形室中爆炸压力和压力上升率的试验方法
1996-11-22
现行
ASTM D5551-95(2019)
Standard Test Method for Determination of the Cloud Point of Oil
油浊点测定的标准试验方法
2019-04-01
现行
ASTM D2024-09(2023)
Standard Test Method for Cloud Point of Nonionic Surfactants
非离子表面活性剂浊点的标准试验方法
2023-07-01
现行
GB/T 6986-2014
石油产品浊点测定法
Standard test method for cloud point of petroleum products
2014-02-19
现行
ISO/IEC 80079-20-2-2016
Explosive atmospheres - Part 20-2: Material characteristics - Combustible dusts test methods
爆炸性环境 - 第20-2部分:材料特性 - 可燃粉尘测试方法
2016-02-18