首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2581-14(2023)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Shearography of Polymer Matrix Composites and Sandwich Core Materials in Aerospace Applications 航空航天应用中聚合物基复合材料和夹层芯材剪切成像的标准实施规程
发布日期: 2023-12-01
1.1 本规程描述了完全或部分由纤维增强聚合物基复合材料制成的聚合物基复合物和夹层芯材料的剪切成像程序。所考虑的复合材料通常包含连续的高模量(大于20 GPa(3 × 106 psi))纤维,但也可以包含不连续的纤维、织物或颗粒增强物。 1.2 本规程描述了行业和联邦机构目前使用的既定剪切图程序,这些程序已证明在产品工艺设计和优化、制造工艺控制、制造后检查和使用中检查期间,在聚合物基复合材料和夹层芯材料的质量保证方面具有实用性。 1.3 本规程适用于测试聚合物基体复合材料和夹层芯材料,包括但不限于双马来酰亚胺、环氧树脂、酚醛树脂、聚(酰胺亚胺)、聚苯并咪唑、聚酯(热固性和热塑性)、聚醚醚酮、聚(醚酰亚胺)、聚酰亚胺(热固性和热塑)、聚苯硫醚或聚砜基体;以及氧化铝、芳族聚酰胺、硼、碳、玻璃、石英或碳化硅纤维。典型的制造几何形状包括单轴、交叉层压板和角层压板;以及蜂窝和泡沫芯夹层材料和结构。 1.4 此做法未指定接受- 拒绝标准,不打算用作批准聚合物基复合材料或夹层芯材料使用的手段。 1.5 为了确保正确使用参考标准,有公认的无损检测(NDT)专家,他们根据行业和公司无损检测规范进行认证。建议无损检测专家参与任何复合材料部件设计、质量保证、在役维护或损伤检查活动。 1.6 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 5.1 剪切图通常用于产品工艺设计和优化、工艺控制、制造后检查和使用中检查,可用于测量静态和动态轴向(拉伸和压缩)应变,以及剪切、泊松、弯曲和扭转应变。 剪切成像检测到的缺陷的一般类型包括分层、负载下的变形、脱粘/未粘、微裂纹和厚度变化。 5.2 指南中提供了其他信息 E2533 关于剪切成像技术的优点和局限性、相关ASTM文件的使用、试样几何形状和尺寸考虑、校准和标准化以及物理参考标准。 5.3 关于纤维缠绕压力容器(也称为复合外包装压力容器)的剪切成像程序,请参阅指南 E2982 . 5.4 影响剪切图的因素包括但不限于以下因素,因此应予以报告: 层压板(基体和纤维)材料、叠层几何形状、纤维体积分数(平板);饰面材料、芯材、饰面堆叠顺序、芯几何形状(单元尺寸);芯密度、面层空隙率和面层体积百分比钢筋(夹层芯材);加工和制造方法、总厚度、试样对准、试样处理、试样几何形状和试验环境(平板和夹层芯材)。剪切成像已被用于具有蜂窝和泡沫芯的复合材料和金属面板夹层板、固体单片复合材料层压板、泡沫低温燃料箱隔热层、粘结软木隔热层、飞机轮胎、弹性体和塑料涂层,并取得了良好的效果。 通常,可以检测多个和远侧结合线处的缺陷。
1.1 This practice describes procedures for shearography of polymer matrix composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. The composite materials under consideration typically contain continuous high modulus (greater than 20 GPa (3 × 106 psi)) fibers, but may also contain discontinuous fiber, fabric, or particulate reinforcement. 1.2 This practice describes established shearography procedures that are currently used by industry and federal agencies that have demonstrated utility in quality assurance of polymer matrix composites and sandwich core materials during product process design and optimization, manufacturing process control, after manufacture inspection, and in service inspection. 1.3 This practice has utility for testing of polymer matrix composites and sandwich core materials containing but not limited to bismaleimide, epoxy, phenolic, poly(amideimide), polybenzimidazole, polyester (thermosetting and thermoplas- tic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross-ply and angle-ply laminates; as well as honeycomb and foam core sandwich materials and structures. 1.4 This practice does not specify accept-reject criteria and is not intended to be used as a means for approving polymer matrix composites or sandwich core materials for service. 1.5 To ensure proper use of the referenced standards, there are recognized nondestructive testing (NDT) specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any composite component design, quality assurance, in-service maintenance, or damage examination activity. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Shearography is commonly used during product process design and optimization, process control, after manufacture inspection, and in service inspection, and can be used to measure static and dynamic axial (tensile and compressive) strain, as well as shearing, Poisson, bending, and torsional strains. The general types of defects detected by shearography include delamination, deformation under load, disbond/unbond, microcracks, and thickness variation. 5.2 Additional information is given in Guide E2533 about the advantages and limitations of the shearography technique, use of related ASTM documents, specimen geometry and size considerations, calibration and standardization, and physical reference standards. 5.3 For procedures for shearography of filament-wound pressure vessels, otherwise known as composite overwrapped pressure vessels, consult Guide E2982 . 5.4 Factors that influence shearography and therefore shall be reported include but are not limited to the following: laminate (matrix and fiber) material, lay-up geometry, fiber volume fraction (flat panels); facing material, core material, facing stack sequence, core geometry (cell size); core density, facing void content, and facing volume percent reinforcement (sandwich core materials); processing and fabrication methods, overall thickness, specimen alignment, specimen conditioning, specimen geometry, and test environment (flat panels and sandwich core materials). Shearography has been used with excellent results for composite and metal face sheet sandwich panels with both honeycomb and foam cores, solid monolithic composite laminates, foam cryogenic fuel tank insulation, bonded cork insulation, aircraft tires, elastomeric and plastic coatings. Frequently, defects at multiple and far side bond lines can be detected.
分类信息
关联关系
研制信息
归口单位: E07.10
相似标准/计划/法规