1.1
Compositing and subsampling are key links in the chain of sampling and analytical events that must be performed in compliance with project objectives and instructions to ensure that the resulting data are representative. This guide discusses the advantages and appropriate use of composite sampling, field procedures and techniques to mix the composite sample, and procedures to collect an unbiased and precise subsample(s) from a larger sample. It discusses the advantages and limitations of using composite samples in designing sampling plans for characterization of wastes (mainly solid) and potentially contaminated media. This guide assumes that an appropriate sampling device is selected to collect an unbiased sample.
1.2
The guide does not address: where samples should be collected (depends on the objectives) (see Guide
D6044
), selection of sampling equipment, bias introduced by selection of inappropriate sampling equipment, sample collection procedures or collection of a representative specimen from a sample, or statistical interpretation of resultant data and devices designed to dynamically sample process waste streams. It also does not provide sufficient information to statistically design an optimized sampling plan, or determine the number of samples to collect or calculate the optimum number of samples to composite to achieve specified data quality objectives (see Practice
D5792
). Standard procedures for planning waste sampling activities are addressed in Guide
D4687
.
1.3
The sample mixing and subsampling procedures described in this guide are considered inappropriate for samples to be analyzed for volatile organic compounds. Volatile organics are typically lost through volatilization during sample collection, handling, shipping, and laboratory sample preparation unless specialized procedures are used. The enhanced mixing described in this guide is expected to cause significant losses of volatile constituents. Specialized procedures should be used for compositing samples for determination of volatiles such as combining directly into methanol (see Guide
D4547
).
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
This guide provides guidance to persons managing or responsible for designing sampling and analytical plans for determining whether sample compositing may assist in more efficiently meeting study objectives. Samples must be composited properly, or useful information on contamination distribution and sample variance may be lost.
5.2
The procedures described for mixing samples and obtaining a representative subsample are broadly applicable to waste sampling where it is desired to transport a reduced amount of material to the laboratory. The mixing and subsampling sections provide guidance to persons preparing sampling and analytical plans and field personnel.
5.3
While this guide generally focuses on solid materials, the attributes and limitations of composite sampling apply equally to static liquid samples.