首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ISO 22889:2013
到馆阅读
收藏跟踪
购买正版
Metallic materials — Method of test for the determination of resistance to stable crack extension using specimens of low constraint 金属材料——用低约束试样测定稳定裂纹扩展阻力的试验方法
发布日期: 2013-09-19
ISO 22889:2013规定了通过对塑性变形表现出低约束的裂纹试样进行准静态加载来确定均质金属材料的裂纹张开位移δ 5和临界裂纹尖端张开角ψ c的稳定裂纹扩展阻力的方法。紧凑和中等裂纹的拉伸试样被缺口,疲劳预裂,并在缓慢增加的位移下进行测试。 ISO 22889:2013描述了涵盖对不满足尺寸不敏感断裂特性要求的试样进行测试的方法;即相对较薄规格中的致密试样和中裂纹拉伸试样。 给出了确定裂纹扩展阻力曲线(R曲线)的方法。根据ISO 12135测定致密试样的断裂韧性点值。给出了中裂纹拉伸试样断裂韧性点值的确定方法。 使用多样本或单样本方法确定抗裂纹扩展性。多样本方法要求将几个名义上相同的样本中的每一个加载到指定的位移水平。标记延性裂纹扩展的程度,然后将试样破开以测量裂纹扩展。基于卸载柔度或电位跌落技术的单试样方法可用于测量裂纹扩展,前提是它们满足指定的精度要求。ISO 12135中描述了单样本技术的建议。使用任一技术,目标是确定足够数量的数据点以充分描述材料的抗裂纹扩展行为。δ 5的测量相对简单且已得到充分证实。δ 5结果用阻力曲线表示,该阻力曲线已被证明在指定的裂纹扩展极限内是唯一的。超过这些限制,致密试样的δ 5 R曲线显示出对试样宽度的强依赖性,而中裂纹拉伸试样的δ 5 R曲线显示出弱依赖性。 CTOA更难通过实验确定。临界CTOA表示为一定量的裂纹扩展后达到的恒定值。CTOA概念已被证明适用于非常大量的裂纹扩展,并且可以应用于超出δ 5应用的当前限制。 这两种抗裂纹扩展措施都适用于结构评估。δ 5概念已经很好地建立,可以通过现有评估程序中的简单裂纹驱动力公式应用于结构完整性问题。CTOA概念通常更准确。其结构应用需要数值方法,即有限元分析。 研究表明,对于最大载荷下的致密和中等裂纹拉伸试样,恒定CTOA的概念与独特的R曲线之间有着非常密切的关系。需要进一步研究以建立δ 5 R曲线和临界CTOA值之间的解析或数值关系。
ISO 22889:2013 specifies methods for determining the resistance to stable crack extension in terms of crack opening displacement, δ5, and critical crack tip opening angle, ψc, for homogeneous metallic materials by the quasistatic loading of cracked specimens that exhibit low constraint to plastic deformation. Compact and middle-cracked tension specimens are notched, precracked by fatigue, and tested under slowly increasing displacement. ISO 22889:2013 describes methods covering tests on specimens not satisfying requirements for size-insensitive fracture properties; namely, compact specimens and middle-cracked tension specimens in relatively thin gauges. Methods are given for determining the crack extension resistance curve (R-curve). Point values of fracture toughness for compact specimens are determined according to ISO 12135. Methods for determining point values of fracture toughness for the middle-cracked tension specimen are given. Crack extension resistance is determined using either the multiple-specimen or single-specimen method. The multiple-specimen method requires that each of several nominally identical specimens be loaded to a specified level of displacement. The extent of ductile crack extension is marked and the specimens are then broken open to allow measurement of crack extension. Single-specimen methods based on either unloading compliance or potential drop techniques can be used to measure crack extension, provided they meet specified accuracy requirements. Recommendations for single-specimen techniques are described in ISO 12135. Using either technique, the objective is to determine a sufficient number of data points to adequately describe the crack extension resistance behaviour of a material. The measurement of δ5 is relatively simple and well established. The δ5 results are expressed in terms of a resistance curve, which has been shown to be unique within specified limits of crack extension. Beyond those limits, δ5 R-curves for compact specimens show a strong specimen dependency on specimen width, whereas the δ5 R-curves for middle-cracked tension specimens show a weak dependency. CTOA is more difficult to determine experimentally. The critical CTOA is expressed in terms of a constant value achieved after a certain amount of crack extension. The CTOA concept has been shown to apply to very large amounts of crack extension and can be applied beyond the current limits of δ5 applications. Both measures of crack extension resistance are suitable for structural assessment. The δ5 concept is well established and can be applied to structural integrity problems by means of simple crack driving force formulae from existing assessment procedures. The CTOA concept is generally more accurate. Its structural application requires numerical methods, i.e. finite element analysis. Investigations have shown a very close relation between the concept of constant CTOA and a unique R-curve for both compact and middle-cracked tension specimens up to maximum load. Further study is required to establish analytical or numerical relationships between the δ5 R-curve and the critical CTOA values.
分类信息
关联关系
研制信息
归口单位: ISO/TC 164/SC 4
相似标准/计划/法规
现行
ASD-STAN prEN 2951
Metallic materials - Test method - Micrographic determination of content of non-metallic inclusions
金属材料.试验方法.非金属夹杂物含量的显微照相测定
1997-11-28
现行
ASD-STAN prEN 6018
Test methods for metallic materials - Determination of density according to displacement method
金属材料的试验方法.根据位移法测定密度
1990-04-25
现行
DIN 50131
Testing of Metallic Materials; Determination of Shrinkage
金属材料的测试;收缩率的测定
1974-07-01
现行
BS EN ISO 15653-2018
Metallic materials. Method of test for the determination of quasistatic fracture toughness of welds
金属材料 焊缝准静态断裂韧性测定的试验方法
2018-02-22
现行
ASTM E2448-22
Standard Test Method for Determining the Superplastic Properties of Metallic Sheet Materials
测定金属板材超塑性的标准试验方法
2022-06-15
现行
ASTM D5517-14(2021)
Standard Test Method for Determining Extractability of Metals from Art Materials
测定艺术材料中金属可萃取性的标准试验方法
2021-11-01
现行
BS ISO 12135-2021
Metallic materials. Unified method of test for the determination of quasistatic fracture toughness
金属材料 测定准静态断裂韧性的统一试验方法
2022-11-30
现行
GB/T 28896-2023
金属材料 焊接接头准静态断裂韧度测定的试验方法
Metallic materials—Method of test for the determination of quasistatic fracture toughness of welds
2023-03-17
现行
ISO 15653-2018
Metallic materials — Method of test for the determination of quasistatic fracture toughness of welds
金属材料 - 测量焊缝的准静态断裂韧性的测试方法
2018-01-05
现行
ISO 12135-2021
Metallic materials — Unified method of test for the determination of quasistatic fracture toughness
金属材料 - 统一的准静态断裂韧度测定方法
2021-07-27
现行
ASD-STAN prEN 3863
Non-metallic materials - Glass tranparencies - Test methods - Determination of flatness
非金属材料.玻璃透明度.试验方法.平整度的测定
2001-10-31
现行
GB/T 21143-2014
金属材料 准静态断裂韧度的统一试验方法
Metallic materials―Unified method of test for determination of quasistatic fracture toughness
2014-12-05
现行
ASD-STAN prEN 4523
Metallic materials Test methods Compression testing
金属材料试验方法压缩试验
1998-12-31
现行
KS B 0802(2018 Confirm)
금속 재료 인장 시험 방법
金属材料拉伸试验方法
2003-10-08
现行
KS B 0802(2018 Confirm)
금속 재료 인장 시험 방법
金属材料拉伸试验方法
2003-10-08
现行
KS B 0810(2018 Confirm)
금속 재료 충격 시험 방법
金属材料冲击试验方法
2003-10-28
现行
KS B 0810(2018 Confirm)
금속 재료 충격 시험 방법
金属材料冲击试验方法
2003-10-28
现行
KS B 0802(2023 Confirm)
금속 재료 인장 시험 방법
金属材料拉伸试验方法
2003-10-08
现行
KS B 0810(2023 Confirm)
금속 재료 충격 시험 방법
金属材料冲击试验方法
2003-10-28
现行
GB/T 232-2024
金属材料 弯曲试验方法
Metallic materials—Bend testing method
2024-03-15