首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1021-15(2019)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Spectral Responsivity Measurements of Photovoltaic Devices 光伏器件光谱响应测量的标准测试方法
发布日期: 2019-04-01
1.1 本试验方法用于确定单结光伏器件的绝对或相对光谱响应。 1.2 由于量子效率与光谱响应度直接相关,因此该测试方法可用于确定单结光伏器件的量子效率(参见 10.10 ). 1.3 本试验方法需要使用偏光。 1.4 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 光伏器件的光谱响应度是计算光谱失配参数所必需的(见试验方法 E973 ). 测试方法中使用了光谱失配 E948 在测试方法中,测量光伏电池在模拟阳光下的性能 E1036 在测试方法中,测量光伏组件和阵列的性能 E1125 使用表格光谱和试验方法校准光伏基准电池 E1362 校准光伏二次参考电池。光谱失配参数可以使用绝对或相对光谱响应度数据计算。 5.2 该测试方法测量光伏器件的差分光谱响应度。该程序需要使用白光偏压,使用户能够评估差分光谱响应度对到达设备的光强度的依赖性。当存在这种依赖性时,整体光谱响应度应等于在零和设备预期操作条件之间的光偏压水平下的差分光谱响应度。根据DUT在达到预期工作条件的强度范围内的线性响应,可能没有必要设置非常高的光偏压水平。 5.3 光伏器件的光谱响应度有助于了解器件性能和材料特性。 5.4 本文所述程序适用于研发应用或制造商的产品质量控制。 5.5 参考光电探测器的校准必须可通过国家标准与技术研究所(NIST)光谱响应度标度或其他相关辐射度标度追溯到国际单位制。 3. , 4. 光电探测器的校准模式(辐照度或功率)将影响使用的程序和可以执行的测量类型。 5.6 本试验方法不解决样品稳定性问题。 5.7 使用该测试方法获得的结果和额外测量,包括反射率与波长的关系,可以计算器件的内部量子效率。 这些测量超出了本试验方法的范围。 5.8 本试验方法适用于单结光伏电池。如果可以对感兴趣的单个结进行电接触,则它还可以用于测量串联多结光伏器件内单个结的光谱响应度。 5.9 附加程序(见测试方法 E2236 ),当只能对整个装置的两个端子进行电接触时,可以确定串联、多结光伏装置内单个结的光谱响应度。 5.10 使用正向偏置技术 5. ,可以扩展本试验方法中的程序,以测量单个系列的光谱响应度- 光伏组件内的连接电池。这些技术超出了本试验方法的范围。
1.1 This test method is to be used to determine either the absolute or relative spectral responsivity response of a single-junction photovoltaic device. 1.2 Because quantum efficiency is directly related to spectral responsivity, this test method may be used to determine the quantum efficiency of a single-junction photovoltaic device (see 10.10 ). 1.3 This test method requires the use of a bias light. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 The spectral responsivity of a photovoltaic device is necessary for computing spectral mismatch parameter (see Test Method E973 ). Spectral mismatch is used in Test Method E948 to measure the performance of photovoltaic cells in simulated sunlight, in Test Methods E1036 to measure the performance of photovoltaic modules and arrays, in Test Method E1125 to calibrate photovoltaic primary reference cells using a tabular spectrum, and in Test Method E1362 to calibrate photovoltaic secondary reference cells. The spectral mismatch parameter can be computed using absolute or relative spectral responsivity data. 5.2 This test method measures the differential spectral responsivity of a photovoltaic device. The procedure requires the use of white-light bias to enable the user to evaluate the dependence of the differential spectral responsivity on the intensity of light reaching the device. When such dependence exists, the overall spectral responsivity should be equivalent to the differential spectral responsivity at a light bias level somewhere between zero and the intended operating conditions of the device. Depending on the linearity response of the DUT over the intensity range up to the intended operating conditions, it may not be necessary to set up a very high light bias level. 5.3 The spectral responsivity of a photovoltaic device is useful for understanding device performance and material characteristics. 5.4 The procedure described herein is appropriate for use in either research and development applications or in product quality control by manufacturers. 5.5 The reference photodetector’s calibration must be traceable to SI units through a National Institute of Standards and Technology (NIST) spectral responsivity scale or other relevant radiometric scale. 3 , 4 The calibration mode of the photodetector (irradiance or power) will affect the procedures used and the kinds of measurements that can be performed. 5.6 This test method does not address issues of sample stability. 5.7 Using results obtained by this test method and additional measurements including reflectance versus wavelength, one can compute the internal quantum efficiency of a device. These measurements are beyond the scope of this test method. 5.8 This test method is intended for use with a single-junction photovoltaic cell. It can also be used to measure the spectral responsivity of a single junction within a series-connected, multiple-junction photovoltaic device if electrical contact can be made to the individual junction(s) of interest. 5.9 With additional procedures (see Test Methods E2236 ), one can determine the spectral responsivity of individual junctions within series-connected, multiple-junction, photovoltaic devices when electrical contact can only be made to the entire device’s two terminals. 5.10 Using forward biasing techniques 5 , it is possible to extend the procedure in this test method to measure the spectral responsivity of individual series-connected cells within photovoltaic modules. These techniques are beyond the scope of this test method.
分类信息
关联关系
研制信息
归口单位: E44.09
相似标准/计划/法规