首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ISO/IEC 5259-1:2024
到馆提醒
收藏跟踪
购买正版
Artificial intelligence - Data quality for analytics and machine learning (ML) - Part 1: Overview, terminology, and examples 人工智能.分析和机器学习(ML)的数据质量.第1部分:概述、术语和示例
发布日期: 2024-07-02
什么是ISO/IEC 5259-1? ISO/IEC 5259-1是ISO/IEC 5259系列的基础部分,专注于分析和机器学习(ML)的数据质量。本标准提供了概述、术语和说明性示例,以帮助组织有效地理解和应用整个系列。它建立了在数据生命周期的不同阶段评估和提高数据质量的框架,这对于可靠的分析和ML结果至关重要。 为什么ISO/IEC 5259-1很重要? ISO/IEC 5259-1至关重要,因为它解决了由数据驱动决策主导的时代对高数据质量的基本需求。随着数据成为分析和机器学习的原材料,确保其质量直接影响分析模型和ML系统的准确性和可靠性。该标准为组织提供了必要的工具和方法来评估、管理和提高数据质量,确保所使用的数据适合其预期目的。它提供了一种通用语言和一套实践,有助于有效的数据质量管理,这对于实现一致和可靠的分析结果至关重要。 福利 -提高ML模型和分析的可靠性和准确性 -跨不同部门和应用的标准化数据质量评估 -提高管理数据质量的组织能力
What is ISO/IEC 5259-1?
ISO/IEC 5259-1 is the foundational part of the ISO/IEC 5259 series, focusing on data quality for analytics and machine learning (ML). This standard provides an overview, terminology, and illustrative examples to help organizations understand and apply the entire series effectively. It establishes the framework for assessing and enhancing data quality across different phases of the data life cycle, crucial for reliable analytics and ML outcomes.
Why is ISO/IEC 5259-1 important?
ISO/IEC 5259-1 is crucial because it addresses the foundational need for high data quality in an era dominated by data-driven decision-making. As data become the raw material for analytics and machine learning, ensuring their quality directly impacts the accuracy and reliability of analytical models and ML systems. This standard equips organizations with the necessary tools and methods to assess, manage, and improve data quality, ensuring that the data used are fit for their intended purpose. It provides a common language and set of practices that facilitate effective data quality management, crucial for achieving consistent and reliable analytics outcomes.
Benefits
- Improved reliability and accuracy of ML models and analytics
- Standardized data quality assessment across various sectors and applications
- Enhanced organizational capability in managing data quality
分类信息
关联关系
研制信息
归口单位: ISO/IEC JTC 1/SC 42
相似标准/计划/法规
现行
ISO/IEC 5259-2-2024
Artificial intelligence — Data quality for analytics and machine learning (ML) — Part 2: Data quality measures
分析和ML用数据质量.第2部分:第2部分:数据质量测量
2024-11-05
现行
ISO/IEC 5259-4-2024
Artificial intelligence - Data quality for analytics and machine learning (ML) - Part 4: Data quality process framework
人工智能.分析和机器学习(ML)的数据质量.第4部分:数据质量过程框架
2024-07-15
现行
ISO/IEC 5259-4-2024
Artificial intelligence — Data quality for analytics and machine learning (ML) — Part 4: Data quality process framework
人工智能——分析和机器学习(ML)的数据质量——第4部分:数据质量过程框架
2024-07-15
现行
ISO/IEC 5259-5-2025
Artificial intelligence — Data quality for analytics and machine learning (ML) — Part 5: Data quality governance framework
人工智能-用于分析和机器学习(ML)的数据质量-第5部分:数据质量治理框架
2025-02-12
现行
ISO/IEC 5259-5-2025
Artificial intelligence - Data quality for analytics and machine learning (ML) - Part 5: Data quality governance framework
人工智能-用于分析和机器学习(ML)的数据质量-第5部分:数据质量治理框架
2025-02-12
现行
ISO/IEC 5259-3-2024
Artificial intelligence - Data quality for analytics and machine learning (ML) - Part 3: Data quality management requirements and guidelines
人工智能.分析和机器学习(ML)的数据质量.第3部分:数据质量管理要求和指南
2024-07-02
现行
ISO/IEC 5259-3-2024
Artificial intelligence — Data quality for analytics and machine learning (ML) — Part 3: Data quality management requirements and guidelines
人工智能——分析和机器学习(ML)的数据质量——第3部分:数据质量管理要求和指南
2024-07-02
现行
GB/T 42755-2023
人工智能 面向机器学习的数据标注规程
Artificial intelligence—Code of practice for data labeling of machine learning
2023-05-23