首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D8141-22
到馆提醒
收藏跟踪
购买正版
Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments 选择挥发性有机化合物(VOCs)和半挥发性有机化合物排放测试方法以确定室内环境建模排放参数的标准指南
发布日期: 2022-11-01
1.1 本指南旨在作为理解何时使用挥发性有机化合物(VOCs)排放测试方法来确定室内空气VOC浓度建模中通常使用的区域特定排放率以及何时使用半挥发性有机化合物排放测试方法确定传质排放参数的基础通常用于模拟室内空气、灰尘和表面SVOC浓度。 1.2 本指南讨论了如何按照挥发性对有机化学品进行常规分类。 1.3 本指南介绍了一个简化的传质模型,描述了从材料到散装空气的有机化学排放。模型参数的值显示为特定于材料/化学/腔室组合。 1.4 本指南介绍了如何使用传质模型来评估化学物质在材料内的扩散或化学物质从材料表面到上覆空气的对流传质是否限制了材料表面的化学排放。 1.5 本指南描述了可用于排放测试的不同腔室的范围。腔室分为动态或静态,常规或夹层。这些室被分类为最佳的,以确定面积比排放率或传质排放参数。 1.6 本指南讨论了吸附和对流传质系数在选择合适的排放室和分析方法中的作用,以准确有效地表征室内材料的排放,用于模拟室内化学浓度。 1.7 本指南建议何时选择优化的排放测试方法,以确定面积比排放率或传质排放参数。对于控制传质过程未知的化学品,本指南概述了一个程序,以确定化学品排放是否由来自材料的化学品的对流传质控制。 1.8 本指南不提供测量排放参数或进行室内暴露建模的具体指南。 1.9 控制湿材料和干材料及产品排放的机制不同。本指南考虑了干燥材料和产品的化学品排放。本指南适用的VOCs和SVOC的功能用途示例包括发泡剂、阻燃剂、粘合剂、增塑剂、溶剂、抗氧化剂、防腐剂和聚结剂 ( 1. ) . 2. 其他VOC和SVOC类别的排放估计,包括不完全燃烧、喷洒或粉末(杀虫剂、白蚁剂、除草剂、防污剂、密封剂、防水剂)产生的排放估计 ( 1. ) 可能需要与本指南中概述的方法不同的方法,因为这些过程可以增加空气中化学品的短期浓度,而不依赖于化学品的挥发性及其分类为VVOC(极易挥发有机化合物)、VOC、SVOC或NVOC(非挥发性有机化合物)。 1.10 排放物的影响(例如,暴露和对乘员的健康影响)没有得到解决,超出了本指南的范围。 1.11 以国际单位制表示的值应视为标准值。本标准不包括其他测量单位。 1.12 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.13 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《国际标准、指南和建议制定原则决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 4.1 VOCs的排放通常受内部传质限制(例如,通过材料的扩散)控制,而SVOC的排放通常由外部质量控制- 转移限制(通过材料上方的空气迁移)。某些化学品的排放可能受到内部和外部传质限制的控制。此外,由于其较低的蒸汽压,SVOC通常以比VOCs更高的速率吸附到不同的介质(室壁、建筑材料、颗粒和其他表面)。这种吸附可以将使用常规VOC排放测试方法达到稳态SVOC浓度所需的时间增加到单个测试的几个月 ( 2. ) . 4.2 因此,用于表征VOCs排放的现有方法可能不适合或不实用,无法正确表征用于模拟室内环境中SVOC浓度的SVOC排放速率。在预测室内环境中的SVOC室内空气浓度时,需要一个传质框架来准确评估SVOC的排放率。 SVOC传质框架包括SVOC排放特性及其对多媒体的划分,包括对室内表面的吸附、空气中的颗粒和沉降的灰尘。一旦确定了SVOC排放参数和分配系数,这些值可用于模拟SVOC室内浓度。
1.1 This guide is intended to serve as a foundation for understanding when to use emission testing methods designed for volatile organic compounds (VOCs) to determine area-specific emission rates that are typically used in modeling indoor air VOC concentrations and when to use emission testing methods designed for semi-volatile organic compounds (SVOCs) to determine mass transfer emission parameters that are typically used to model indoor air, dust, and surface SVOC concentrations. 1.2 This guide discusses how organic chemicals are conventionally categorized with respect to volatility. 1.3 This guide presents a simplified mass-transfer model describing organic chemical emissions from a material to bulk air. The values of the model parameters are shown to be specific to material/chemical/chamber combinations. 1.4 This guide shows how to use a mass-transfer model to estimate whether diffusion of the chemical within the material or convective mass transfer of the chemical from the surface of the material to the overlying air limits chemical emissions from the material surface. 1.5 This guide describes the range of different chambers that are available for emission testing. The chambers are classified as either dynamic or static and either conventional or sandwich. The chambers are categorized as being optimal to determine either the area-specific emission rate or mass-transfer emission parameters. 1.6 This guide discusses the roles sorption and convective mass-transfer coefficients play in selecting the appropriate emission chamber and analysis method to accurately and efficiently characterize emissions from indoor materials for use in modeling indoor chemical concentrations. 1.7 This guide recommends when to choose an emission test method that is optimized to determine either the area-specific emission rate or mass-transfer emission parameters. For chemicals where the controlling mass-transfer process is unknown, the guide outlines a procedure to determine if the chemical emission is controlled by convective mass transfer of the chemical from the material. 1.8 This guide does not provide specific guidance for measuring emission parameters or conducting indoor exposure modeling. 1.9 Mechanisms controlling emissions from wet and dry materials and products are different. This guide considers the emission of chemicals from dry materials and products. Examples of functional uses of VOCs and SVOCs that this guide applies to include blowing agents, flame retardants, adhesives, plasticizers, solvents, antioxidants, preservatives, and coalescing agents ( 1 ) . 2 Emission estimations for other VOC and SVOC classes including those generated by incomplete combustion, spray application, or application as a powder (pesticides, termiticides, herbicides, stain repellents, sealants, water repellants) ( 1 ) may require different approaches than outlined in this guide because these processes can increase short-term concentrations of chemicals in the air independent of the volatility of the chemical and its categorization as a VVOC (very volatile organic compounds), VOC, SVOC, or NVOC (non-volatile organic compounds). 1.10 The effects of the emissions (for example, exposure, and health effects on occupants) are not addressed and are beyond the scope of this guide. 1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Emissions of VOCs are typically controlled by internal mass-transfer limitations (for example, diffusion through the material), while emissions of SVOCs are typically controlled by external mass-transfer limitations (migration through the air immediately above the material). The emission of some chemicals may be controlled by both internal and external mass-transfer limitations. In addition, due to their lower vapor pressure, SVOCs generally adsorb to different media (chamber walls, building materials, particles, and other surfaces) at greater rates than VOCs. This sorption can increase the amount of time required to reach steady-state SVOC concentrations using conventional VOC emission test methods to months for a single test ( 2 ) . 4.2 Thus, existing methods for characterizing emissions of VOCs may not be appropriate or practical to properly characterize emission rates of SVOCs for use in modeling SVOC concentrations in indoor environments. A mass-transfer framework is needed to accurately assess emission rates of SVOCs when predicting the SVOC indoor air concentrations in indoor environments. The SVOC mass-transfer framework includes SVOC emission characteristics and its partition to multimedia including sorption to indoor surfaces, airborne particles, and settled dust. Once the SVOC emission parameters and partitioning coefficients have been determined, these values can be used to modeling SVOC indoor concentrations.
分类信息
关联关系
研制信息
归口单位: D22.05
相似标准/计划/法规