首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2594-20
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Analysis of Nickel Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based) 用电感耦合等离子体原子发射光谱法分析镍合金的标准试验方法(基于性能)
发布日期: 2020-01-01
1.1 本试验方法描述了镍合金的感应耦合等离子体原子发射光谱分析,如B02委员会规定,其化学成分在以下限制范围内: 要素 应用范围(%) 铝 0.01–1.00 硼 0.001–0.050 钙 0.001–0.05 碳 0.10–0.20 铬 0.01–33.0 钴 0.10–20.0 铜 0.01–3.00 铁 0.01–50.0 领导 0.001–0.01 镁 0.0001–0.100 锰 0.01–3.0 钼 0.01–30.0 铌 0.01–6.0 镍 25.0–80.0 氮 0.001–0.20 氧气 0.0001–0.003 磷 0.001–0.030 硫黄 0.0001–0.010 硅 0.01–1.50 钽 0.005–0.10 锡 0.001–0.020 钛 0.001–6.0 钨 0.01–5.0 钒 0.01–1.0 锆 0.01–0.10 1.2 可使用本试验方法确定以下元素。试验方法使用者应仔细评估本试验方法的精度和偏差声明,以确定试验方法在预期用途中的适用性。 要素 量化范围(%) 铝 0.060–1.40 硼 0.002–0.020 钙 0.001–0.003 铜 0.010–0.52 镁 0.001–0.10 锰 0.002–0.65 铌 0.020–5.5 磷 0.004–0.030 钽 0.010–0.050 锡 0.002–0.018 钛 0.020–3.1 钨 0.007–0.11 钒 0.010–0.50 锆 0.002–0.10 1.3 本试验方法仅针对规定的元素和范围进行了实验室间试验。如果进行方法验证,包括本文件中所述的方法灵敏度、精度和偏差评估,则可以将该测试方法扩展到其他元素或不同的量化范围。 此外,验证研究必须评估使用参考材料或加标回收率或两者的样品制备方法的可接受性。提醒用户根据实验室的数据质量目标仔细评估验证数据。范围扩展的方法验证也是ISO/IEC的要求 17025 1.4 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 具体警告声明见 8.2.6.3 第节给出了安全隐患说明 9 . 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本镍合金化学分析试验方法主要用于测试材料是否符合ASTM B02委员会管辖范围内的规范。它也可用于测试是否符合与测试方法兼容的其他规范。 5.2 假设所有使用该测试方法的人都是经过培训的分析员,能够熟练、安全地执行常见的实验室程序,并且工作将在配备适当的实验室中进行。 5.3 这是一种基于性能的测试方法,更依赖于测试结果的证明质量,而不是严格遵守特定的程序步骤。预计使用该测试方法的实验室将编制自己的工作说明书。这些工作说明将包括特定实验室的详细操作说明、使用的特定参考材料和性能验收标准。在适用的情况下,还预计每个实验室将参与能力验证计划,如实践中所述 E2027年 ,参与实验室的结果将令人满意。
1.1 This test method describes the inductively coupled plasma atomic emission spectrometric analysis of nickel alloys, such as specified by Committee B02, and having chemical compositions within the following limits: Element Application Range (%) Aluminum 0.01–1.00 Boron 0.001–0.050 Calcium 0.001–0.05 Carbon 0.10–0.20 Chromium 0.01–33.0 Cobalt 0.10–20.0 Copper 0.01–3.00 Iron 0.01–50.0 Lead 0.001–0.01 Magnesium 0.0001–0.100 Manganese 0.01–3.0 Molybdenum 0.01–30.0 Niobium 0.01–6.0 Nickel 25.0–80.0 Nitrogen 0.001–0.20 Oxygen 0.0001–0.003 Phosphorous 0.001–0.030 Sulfur 0.0001–0.010 Silicon 0.01–1.50 Tantalum 0.005–0.10 Tin 0.001–0.020 Titanium 0.001–6.0 Tungsten 0.01–5.0 Vanadium 0.01–1.0 Zirconium 0.01–0.10 1.2 The following elements may be determined using this test method. The test method user should carefully evaluate the precision and bias statements of this test method to determine applicability of the test method for the intended use. Element Quantification Range (%) Aluminum 0.060–1.40 Boron 0.002–0.020 Calcium 0.001–0.003 Copper 0.010–0.52 Magnesium 0.001–0.10 Manganese 0.002–0.65 Niobium 0.020–5.5 Phosphorous 0.004–0.030 Tantalum 0.010–0.050 Tin 0.002–0.018 Titanium 0.020–3.1 Tungsten 0.007–0.11 Vanadium 0.010–0.50 Zirconium 0.002–0.10 1.3 This test method has only been interlaboratory tested for the elements and ranges specified. It may be possible to extend this test method to other elements or different quantification ranges provided that method validation is performed that includes evaluation of method sensitivity, precision, and bias as described in this document. Additionally, the validation study must evaluate the acceptability of sample preparation methodology using reference materials or spike recoveries, or both. The user is cautioned to carefully evaluate the validation data against the laboratory’s data quality objectives. Method validation of scope extensions is also a requirement of ISO/IEC 17025. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 8.2.6.3 and safety hazard statements are given in Section 9 . 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method for the chemical analysis of nickel alloys is primarily intended to test material for compliance with specifications such as those under jurisdiction of ASTM Committee B02. It may also be used to test compliance with other specifications that are compatible with the test method. 5.2 It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely, and that the work will be performed in a properly equipped laboratory. 5.3 This is a performance-based test method that relies more on the demonstrated quality of the test result than on strict adherence to specific procedural steps. It is expected that laboratories using this test method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory, the specific reference materials employed, and performance acceptance criteria. It is also expected that, when applicable, each laboratory will participate in proficiency test programs, such as described in Practice E2027 , and that the results from the participating laboratory will be satisfactory.
分类信息
关联关系
研制信息
归口单位: E01.08
相似标准/计划/法规
现行
ASTM E2823-17
Standard Test Method for Analysis of Nickel Alloys by Inductively Coupled Plasma Mass Spectrometry (Performance-Based)
通过电感耦合等离子体质谱法分析镍合金的标准测试方法(基于性能)
2017-01-01
现行
ASTM E1835-14(2022)
Standard Test Method for Analysis of Nickel Alloys by Flame Atomic Absorption Spectrometry
用火焰原子吸收光谱法分析镍合金的标准试验方法
2022-08-15
现行
ASTM E1473-22
Standard Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys
镍、钴和高温合金化学分析的标准试验方法
2022-11-15
现行
ASTM F2004-24
Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis
用热分析法测定镍钛合金转变温度的标准试验方法
2024-04-15
现行
ASTM E3047-22
Standard Test Method for Analysis of Nickel Alloys by Spark Atomic Emission Spectrometry
火花原子发射光谱法分析镍合金的标准试验方法
2022-12-01
现行
YY/T 0641-2008
热分析法测量NiTi合金相变温度的标准方法
Standard test method for transformation temperature of nickel—Titanium alloys by thermal analysis
2008-04-25
现行
ASTM E1834-18
Standard Test Method for Analysis of Nickel Alloys by Graphite Furnace Atomic Absorption Spectrometry
用石墨炉原子吸收光谱法分析镍合金的标准试验方法
2018-12-01
现行
ASTM E3061-24
Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance Based)
用电感耦合等离子体原子发射光谱法分析铝和铝合金的标准试验方法(基于性能)
2024-05-15
现行
ASTM E1277-23
Standard Test Method for Analysis of Zinc-5 % Aluminum-Mischmetal Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry
锌-5分析的标准试验方法 % 铝-混合稀土合金的电感耦合等离子体原子发射光谱法
2023-04-01
现行
ASTM E353-19e1
Standard Test Methods for Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys
不锈钢、耐热、马氏体时效和其他类似铬镍铁合金化学分析的标准试验方法
2019-11-15
现行
ASTM E354-21e1
Standard Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys
高温、电、磁和其他类似铁、镍和钴合金化学分析的标准试验方法
2021-03-01
现行
ASTM F3139-15(2023)
Standard Test Method for Analysis of Tin-Based Solder Alloys for Minor and Trace Elements Using Inductively Coupled Plasma Atomic Emission Spectrometry
用电感耦合等离子体原子发射光谱法分析锡基焊料合金微量元素的标准试验方法
2023-10-01
现行
ASTM E2371-21a
Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (Performance-Based Test Methodology)
用直流等离子体和电感耦合等离子体原子发射光谱法分析钛和钛合金的标准试验方法(基于性能的试验方法)
2021-12-01