1.1
This test method covers laboratory procedures for determining the resistance of metallic materials to scratching abrasion by means of the wet sand/rubber wheel test. It is the intent of this procedure to provide data that will reproducibly rank materials in their resistance to scratching abrasion under a specified set of conditions.
1.2
Abrasion test results are reported as volume loss in cubic millimetres. Materials of higher abrasion resistance will have a lower volume loss.
1.3
The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
The severity of abrasive wear in any system will depend upon the abrasive particle size, shape and hardness, the magnitude of the stress imposed by the particle, and the frequency of contact of the abrasive particle. In this test method these conditions are standardized to develop a uniform condition of wear which has been referred to as scratching abrasion
(
1 and
2
).
Since the test method does not attempt to duplicate all of the process conditions (abrasive size, shape, pressure, impact or corrosive elements), it should not be used to predict the exact resistance of a given material in a specific environment. The value of the test method lies in predicting the ranking of materials in a similar relative order of merit as would occur in an abrasive environment. Volume loss data obtained from test materials whose lives are unknown in a specific abrasive environment may, however, be compared with test data obtained from a material whose life is known in the same environment. The comparison will provide a general indication of the worth of the unknown materials if abrasion is the predominant factor causing deterioration of the materials.