首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ISO 4037-1:2019
到馆阅读
收藏跟踪
购买正版
Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy — Part 1: Radiation characteristics and production methods 辐射防护.校准剂量仪和剂量率计及测定其作为光子能量函数的响应用X和γ参考辐射.第1部分:辐射特性和产生方法
发布日期: 2019-01-18
本文件规定了X和伽马参考辐射的特性和生产方法,用于根据国际辐射单位和测量委员会(ICRU)[5]的幻象相关操作量校准防护级剂量计和剂量率计。本标准适用的最低空气比释动能率为1μGy h?1.低于该空气比释动能率(kerma rate),需要特别考虑(自然)背景辐射,本文件不包括这一点。 对于第4条至第6条中规定的辐射质量,有足够的公开信息可用于规定匹配或特征化参考场所有相关参数的要求,以实现与模型相关操作量的目标总体不确定度(k=2)约为6%至10%。资料性附录A至C中描述的X射线辐射场未指定为参考X射线- 辐射场。 注:1996年发布的ISO 4037-1第一版包含了一些额外的辐射质量,这些信息不可用。这些是荧光辐射、放射性核素241Am、S-Am的伽马辐射以及高能光子辐射R-Ti和R-Ni,已从本文件的主要部分删除。在资料性附录A和B中,使用最广泛的辐射,即放射性核素241Am,S-Am的荧光辐射和伽马辐射几乎没有变化。资料性附录C给出了质量指数规定的额外X辐射场。 第4条至第6条描述了为特定光子能量范围产生一组参考辐射的方法,其中定义了这些辐射的特性。三组参考辐射分别为: a) 在8千电子伏到330千电子伏的能量范围内,连续过滤X射线; b) 在600千电子伏至1.3兆电子伏的能量范围内,放射性核素发出的伽马辐射; c) 在4兆电子伏到9兆电子伏的能量范围内,加速器产生的光子辐射。 最适合预期应用的参考辐射场可从表1中选择,表1概述了第4条至第6条中规定的所有参考辐射质量。它不包括附件A、B和C中规定的辐射。 第4条至第6条中给出的要求和方法针对的是参考场中与模型相关的操作量的剂量(率)值的总体不确定度(k=2)约为6%至10%。为此,提出了两种生产方法: 第一种方法是产生“匹配参考场”,其特性充分表征,以便允许使用ISO 4037中建议的转换系数- 3.“匹配参考场”的光谱分布与标称参考场相比仅存在微小差异,通过ISO 4037-2中给出和详细描述的程序进行验证。对于匹配的参考辐射场,ISO 4037-3中给出的建议转换系数仅适用于源和剂量仪之间的指定距离,例如1,0 m和2,5 m。对于其他距离,用户必须决定是否可以使用这些转换系数。如果两个值非常相似,例如相差仅为2%或更小,则可以使用线性插值。 第二种方法是产生“特征化参考场”。要么通过光谱法确定转换系数,要么直接使用二级标准剂量计测量所需值。本方法适用于任何辐射质量、任何测量量以及任何模型和辐射入射角(如适用)。 此外,对指定参考辐射的参数的要求取决于模型中的定义深度,即0,07 mm、3 mm和10 mm,因此,不同深度的要求不同。因此,给定的辐射场可以是深度为0.07 mm的“匹配参考场”,但不能是深度为10 mm的“匹配参考场”,因此它可以是“特征参考场”。只要空气比释动能不低于1μGy/h,就可以确定任何距离的转换系数。 这两种方法都需要参考场的带电粒子平衡。然而,在校准剂量计的工作场所,这并不总是成立的。在参考深度d没有固有带电粒子平衡的光子能量下尤其如此,这取决于能量和参考深度d的实际组合。能量超过65千电子伏、0.75兆电子伏和2.1兆电子伏的电子只能分别穿透0.07毫米、3毫米和10毫米的ICRU组织,光子能量高于这些值的辐射质量被认为是没有内在带电粒子平衡的辐射质量,在这些深度定义的量。 为了确定剂量(率)值及其相关的整体不确定度,需要对用于确定量值的所有测量仪器进行校准,该校准可追溯至国家标准。 本文件未规定脉冲参考辐射场。
This document specifies the characteristics and production methods of X and gamma reference radiation for calibrating protection-level dosemeters and doserate meters with respect to the phantom related operational quantities of the International Commission on Radiation Units and Measurements (ICRU)[5]. The lowest air kerma rate for which this standard is applicable is 1 μGy h?1. Below this air kerma rate the (natural) background radiation needs special consideration and this is not included in this document. For the radiation qualities specified in Clauses 4 to 6, sufficient published information is available to specify the requirements for all relevant parameters of the matched or characterized reference fields in order to achieve the targeted overall uncertainty (k = 2) of about 6 % to 10 % for the phantom related operational quantities. The X ray radiation fields described in the informative Annexes A to C are not designated as reference X-radiation fields. NOTE The first edition of ISO 4037-1, issued in 1996, included some additional radiation qualities for which such published information is not available. These are fluorescent radiations, the gamma radiation of the radionuclide 241Am, S-Am, and the high energy photon radiations R-Ti and R-Ni, which have been removed from the main part of this document. The most widely used radiations, the fluorescent radiations and the gamma radiation of the radionuclide 241Am, S-Am, are included nearly unchanged in the informative Annexes A and B. The informative Annex C gives additional X radiation fields, which are specified by the quality index. The methods for producing a group of reference radiations for a particular photon-energy range are described in Clauses 4 to 6, which define the characteristics of these radiations. The three groups of reference radiation are: a) in the energy range from about 8 keV to 330 keV, continuous filtered X radiation; b) in the energy range 600 keV to 1,3 MeV, gamma radiation emitted by radionuclides; c) in the energy range 4 MeV to 9 MeV, photon radiation produced by accelerators. The reference radiation field most suitable for the intended application can be selected from Table 1, which gives an overview of all reference radiation qualities specified in Clauses 4 to 6. It does not include the radiations specified in the Annexes A, B and C. The requirements and methods given in Clauses 4 to 6 are targeted at an overall uncertainty (k = 2) of the dose(rate) value of about 6 % to 10 % for the phantom related operational quantities in the reference fields. To achieve this, two production methods are proposed: The first one is to produce "matched reference fields", whose properties are sufficiently well-characterized so as to allow the use of the conversion coefficients recommended in ISO 4037-3. The existence of only a small difference in the spectral distribution of the "matched reference field" compared to the nominal reference field is validated by procedures, which are given and described in detail in ISO 4037?2. For matched reference radiation fields, recommended conversion coefficients are given in ISO 4037?3 only for specified distances between source and dosemeter, e.g., 1,0 m and 2,5 m. For other distances, the user has to decide if these conversion coefficients can be used. If both values are very similar, e.g., differ only by 2 % or less, then a linear interpolation may be used. The second method is to produce "characterized reference fields". Either this is done by determining the conversion coefficients using spectrometry, or the required value is measured directly using secondary standard dosimeters. This method applies to any radiation quality, for any measuring quantity and, if applicable, for any phantom and angle of radiation incidence. In addition, the requirements on the parameters specifying the reference radiations depend on the definition depth in the phantom, i.e., 0,07 mm, 3 mm and 10 mm, therefore, the requirements are different for the different depths. Thus, a given radiation field can be a "matched reference field" for the depth of 0,07 mm but not for the depth of 10 mm, for which it can then be a "characterized reference field". The conversion coefficients can be determined for any distance, provided the air kerma rate is not below 1 μGy/h. Both methods need charged particle equilibrium for the reference field. However, this is not always established in the workplace field for which the dosemeter is calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths. To determine the dose(rate) value and the associated overall uncertainty of it, a calibration of all measuring instruments used for the determination of the quantity value is needed which is traceable to national standards. This document does not specify pulsed reference radiation fields.
分类信息
关联关系
研制信息
归口单位: ISO/TC 85/SC 2
相似标准/计划/法规
现行
UNE 20568-1976
PORTABLE X OR GAMMA RADIATION EXPOSURE RATE METERS AND MONITORS FOR USE IN RADIOLOGICAL PROTECTION
辐射防护用便携式X或γ辐射暴露率计和监测器
1976-01-15
现行
BS EN ISO 4037-1-2021
Radiological protection. X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy-Radiation characteristics and production methods
辐射防护 用于校准剂量计和剂量率计并确定其作为光子能量函数的响应的X和γ参考辐射
2021-02-24
现行
BS EN ISO 4037-4-2021
Radiological protection. X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy-Calibration of area and personal dosemeters in low energy X reference radiation fields
辐射防护 用于校准剂量计和剂量率计并确定其作为光子能量函数的响应的X和γ参考辐射
2021-02-22
现行
UNE 20571-1976
LOW ENERGY X OR GAMMA RADIATION PORTABLE EXPOSURE RATE METERS AND MONITORS FOR USE IN RADIOLOGICAL PROTECTION
辐射防护用低能X或γ辐射便携式暴露率计和监测器
1976-08-15
现行
ISO 4037-4-2019
Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy — Part 4: Calibration of area and personal dosemeters in low energy X reference radiation fields
放射防护 - X和γ参考辐射 用于校准剂量计和剂量计 并确定其作为光子能量的函数的响应 - 第4部分:低能X参考辐射场中区域和个人剂量计的校准
2019-01-18
现行
BS EN ISO 4037-2-2021
Radiological protection. X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy-Dosimetry for radiation protection over the energy ranges from 8 keV to 1,3 MeV and 4 MeV to 9 MeV
辐射防护 用于校准剂量计和剂量率计并确定其作为光子能量函数的响应的X和γ参考辐射
2021-02-22
现行
BS EN ISO 4037-3-2021
Radiological protection. X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy-Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence
辐射防护 用于校准剂量计和剂量率计并确定其作为光子能量函数的响应的X和γ参考辐射
2021-02-22
现行
ISO 4037-2-2019
Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy — Part 2: Dosimetry for radiation protection over the energy ranges from 8 keV to 1,3 MeV and 4 MeV to 9 MeV
放射防护 - X和γ参考辐射 用于校准剂量计和剂量计 并用于确定其作为光子能量的函数的响应 - 第2部分:辐射保护剂量范围为8keV至1,3MeV和4MeV至9 MeV
2019-01-18
现行
DIN EN ISO 4037-4
Radiological protection - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 4: Calibration of area and personal dosemeters in low energy X reference radiation fields (ISO 4037-4:2019); German version EN ISO 4037-4:2021
辐射防护.校准剂量计和剂量率计并确定其作为光子能量函数响应的X和伽马参考辐射.第4部分:低能X参考辐射场中区域和个人剂量计的校准(ISO 4037-4-2019);德语版本
2021-07-01
现行
ISO 4037-3-2019
Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy — Part 3: Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence
辐射防护.校准剂量计和剂量率计并确定其作为光子能量函数响应的X和γ参考辐射.第3部分:面积和个人剂量计的校准及其作为能量和入射角函数响应的测量
2019-01-30
现行
DIN EN ISO 4037-1
Radiological protection - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 1: Radiation characteristics and production methods (ISO 4037-1:2019); German version EN ISO 4037-1:2021
辐射防护.校准剂量计和剂量率计并确定其作为光子能量函数响应的X和γ参考辐射.第1部分:辐射特性和产生方法(ISO 4037-1-2019);德文版EN ISO 4037-1:2021
2021-07-01
现行
GB/T 12162.2-2004
用于校准剂量仪和剂量率仪及确定其能量响应的 X和γ参考辐射 第2部分:辐射防护用的能量范围为 8keV~1.3MeV 和 4MeV~9MeV 的参考辐射的剂量测定
X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy--Part 2:Dosimetry for radiation protection over the energy ranges 8keV to 1.3 MeV and 4MeV to 9MeV
2004-02-04
现行
DIN EN ISO 4037-2
Radiological protection - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 2: Dosimetry for radiation protection over the energy ranges from 8 keV to 1.3 MeV and 4 MeV to 9 MeV (ISO 4037-2:2019); German version EN ISO 4037-2:2021
辐射防护.校准剂量计和剂量率计并确定其作为光子能量函数响应的X和γ参考辐射.第2部分:8keV至1.3MeV和4MeV至9MeV能量范围内辐射防护的剂量测定(ISO 4037-2-2019);G
2021-07-01
现行
DIN EN ISO 4037-3
Radiological protection - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 3: Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence (ISO 4037-3:2019); German version EN ISO 4037-3:2021
辐射防护.校准剂量计和剂量率计并确定其响应作为光子能量函数的X和γ参考辐射.第3部分:面积和个人剂量计的校准及其响应作为能量和角度函数的测量
2021-07-01