首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2992/E2992M-17
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating Response Robot Mobility: Traverse Sand Terrain 评估反应机器人移动性的标准测试方法:横穿沙地形
发布日期: 2017-09-01
1.1 本测试方法的目的是规定定量测量遥控地面机器人穿越沙地能力所需的设备、程序和性能指标。本试验方法的主要性能指标应为机器人具有规定统计显著性水平的此类能力。 1.2 规定地形上的平均前进速度应为本试验方法的次要性能指标。仅当被测机器人完成统计上显著的重复次数时,才应计算测量值。 1.3 该测试方法也可用于测量操作员执行指定任务的熟练程度。 相应的性能指标可能是在10到30分钟的指定时间段内每分钟完成的任务重复次数。 1.4 该测试方法是地面响应机器人测试方法移动性套件的一部分,但该测试方法是独立和完整的。本试验方法适用于从适合预期任务的防区外距离远程操作的地面系统。该系统包括一个远程操作员,控制所有功能和任何辅助功能或自主行为,以提高整个系统的有效性或效率。 1.5 第节中规定的仪器 6. ,只能测试机器人能力的有限范围。 当机器人通过仪器的一个或多个极限进行测试时,应将注释与结果相关联,表明机器人的实际能力可能超出测试仪器施加的一个或多个极限。例如,沙地地形测试装置的尺寸可能会影响被测机器人的加速度,进而影响由此产生的平均前进速度。 1.6 执行位置- 本试验方法可在任何可实施规定装置和环境条件的地方进行。 1.7 单位- 以国际单位制或英寸-磅单位表示的数值应单独视为标准值。每个系统中规定的值可能不是精确的等效值; 因此,每个系统应相互独立使用。将两个系统的值合并可能会导致不符合标准。这两种装置都是为了便于国际采购材料,并将制造成本降到最低。 1.8 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.9 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 在具有细骨料的地形上穿越,如规范中所规定 C144 ,可能会给地面机器人带来问题,因为骨料可能会逐渐堆积到运动子系统(例如驱动链轮、皮带、链条、轮胎胎面或履带板)中,导致堵塞、打滑或其他故障,从而对机器人的移动性产生不利影响。该测试方法解决了上述移动性问题。 注1: 较大尺寸的骨料可能不太容易包装到机器人运动子系统中,但可能存在不同类型的移动性挑战,例如棱角、粗糙、尖锐或破碎的骨料碎片干扰车轮、轨道或其他类型的运动机制。 这些问题不在本试验方法的范围内。 5.1.1 沙质地形本质上是非刚性的,当机器人通过急转弯时,可能会导致机器人原地转弯或挖洞。某些机器人移动机制可能设计用于其他移动目的,并且可能无法在指定的沙地上产生足够的牵引力。因此,在此类地形中进行广泛测试可能会暴露机器人设计或可靠性问题,并导致现场维护或维修。 5.1.2 沙子穿越能力可能会受到其他因素的影响,例如重量及其分布、地面接触面积和机器人的控制方案。因此,在这种地形中进行广泛的测试也可能导致机器人设计的创新。 5.2 响应机器人的关键特征是,它们可以从安全的防区外距离进行远程操作,可以以操作速度部署,能够在复杂环境中操作,在恶劣环境下充分硬化,可靠且可现场维修,耐用或经济高效地一次性使用,并配备操作防护装置。因此,在响应行动中使用机器人的一个主要优势是提高响应者或士兵的安全性和有效性。 5.3 该测试方法将用户期望与实际能力相结合,以了解在任何给定成本下可部署系统中的固有能力权衡。例如,机器人上电池数量的设计问题可能会影响所需的重量、耐久性或成本。 适当的理解水平有助于确保在当前能力的限制内阐明需求规范。 5.4 该测试方法通过可量化的性能度量提供了基本机器人能力的有形表示。当与套件中的其他相关测试方法一起考虑时,它促进了机器人用户和制造商社区之间的通信。因此,本试验方法可用于: 5.4.1 激励技术创新,引导制造商实现执行基本任务所需的能力组合。 5.4.2 测量并比较机器人的基本能力。该测试方法可以建立系统执行指定任务的可靠性,突出显示中断- 通过能力,并鼓励强化开发系统。 5.4.3 通知采购决策,进行验收测试,并将部署目标与通过重复测试和定量结果比较获得的具有统计意义的机器人能力数据相一致。 5.4.4 将操作员培训和测量熟练程度作为可重复的练习任务,练习执行器、传感器和操作员界面。测试方法可以嵌入到训练场景中,以捕捉和比较定量分数,即使在不受控制的环境变量内。这可以帮助开发、维护、测量和跟踪随时间变化的非常易逝的技能,并允许跨团队、区域或国家平均水平进行比较。 5.4.5 虽然该测试方法是为响应机器人开发的,但它可能适用于其他领域。不同的用户群体可以在测试方法中为各种任务需求设置自己的可接受性能阈值。 5.5 建议该测试方法的用户在解释测试结果时考虑其特定的机器人要求。仅在本试验方法中评估的能力应根据本试验方法的范围进行解释,不得视为机器人移动子系统或整个机器人系统能力的总体指示。单一测试方法仅捕获机器人能力的指定单个方面。 更完整地描述机器人的能力需要更广泛的测试方法的测试结果。
1.1 The purpose of this test method is to specify the apparatuses, procedures, and performance metrics necessary to quantitatively measure a teleoperated ground robot’s capability of traversing sand terrain. The primary performance metric for this test method shall be a robot’s possession of such a capability with a specified statistical significance level. 1.2 Average rate of advance over the specified terrain shall be the secondary performance metric for this test method. The measure shall be calculated only when a robot under test has completed a statistically-significant number of repetitions. 1.3 This test method can also be used to measure the operator proficiency in performing the specified task. The corresponding performance metric may be the number of completed task repetitions per minute over an assigned time period ranging from 10 to 30 minutes. 1.4 This test method is a part of the mobility suite of ground response robot test methods, but this test method is stand-alone and complete. This test method applies to ground systems operated remotely from a standoff distance appropriate for the intended mission. The system includes a remote operator in control of all functionality and any assistive features or autonomous behaviors that improve the effectiveness or efficiency of the overall system. 1.5 The apparatus, specified in Section 6 , can only test a limited range of a robot’s capabilities. When the robot has been tested through the limit or limits of the apparatus, a note shall be associated with the results indicating that the robot’s actual capability may be outside of the limit or limits imposed by the test apparatus. For example, the size of the sand terrain test apparatus could possibly affect the acceleration of the robot under test and, in turn, the resulting average rate of advance. 1.6 Performing Location— This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented. 1.7 Units— The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Both units are referenced to facilitate acquisition of materials internationally and minimize fabrication costs. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Traversing on terrains with fine aggregate, such as specified in Specification C144 , could pose problems for ground robots because the aggregate may become incrementally packed into the locomotion subsystems (such as driving sprockets, belts, chains, tire treads, or track pads) leading to jamming, slippage, or other failures, and thus adversely affecting a robot’s mobility. This test method addresses aforementioned issues of mobility. Note 1: Larger-sized aggregate might not be as easily packed into robotic locomotion subsystems but might present different types of mobility challenges such as angular, rough, sharp, or broken aggregate pieces interfering with wheels, tracks, or other types of locomotion mechanisms. These issues are out of the scope of this test method. 5.1.1 Sand based terrains are non-rigid in nature and could cause a robot to turn-in-place or dig-in when the robot is negotiating a tight turn. Certain robotic locomotion mechanisms might be designed for other mobility purposes and might not create sufficient traction against the specified sand terrain. As such, extensive testing within this type of terrain may expose robot design or reliability issues and lead to field maintenance or repair. 5.1.2 The sand traverse capabilities could be affected by additional factors such as the weight and its distribution, ground contact areas, and control schemes for the robot. As such, extensive testing within this type of terrain may also lead to innovations in robot design. 5.2 Key features of response robots are that they are remotely operated from safe standoff distances, deployable at operational tempos, capable of operating in complex environments, sufficiently hardened against harsh environments, reliable and field serviceable, durable or cost-effectively disposable, and equipped with operational safeguards. As such, a major advantage of using robots in response operations is to enhance the safety and effectiveness of responders or soldiers. 5.3 This test method aligns user expectations with actual capabilities to understand the inherent capability trade-offs in deployable systems at any given cost. For example, a design issue of the number of batteries to be packed on a robot could affect desired weight, endurance, or cost. Appropriate levels of understanding can help ensure that requirement specifications are articulated within the limit of current capabilities. 5.4 This test method provides a tangible representation of essential robot capabilities with quantifiable measures of performance. When considered with other related test methods in the suite, it facilitates communication among communities of robot users and manufacturers. As such, this test method can be used to: 5.4.1 Inspire technical innovation and guide manufacturers toward implementing combinations of capabilities necessary to perform essential mission tasks. 5.4.2 Measure and compare essential robot capabilities. This test method can establish the reliability of the system to perform specified tasks, highlight break-through capabilities, and encourage hardening of developmental systems. 5.4.3 Inform purchasing decisions, conduct acceptance testing, and align deployment objectives with statistically significant robot capabilities data captured through repeated testing and comparison of quantitative results. 5.4.4 Focus operator training and measure proficiency as a repeatable practice task that exercises actuators, sensors, and operator interfaces. The test method can be embedded into training scenarios to capture and compare quantitative scores even within uncontrolled environmental variables. This can help develop, maintain, measure, and track very perishable skills over time and enable comparisons across squads, regions, or national averages. 5.4.5 Although this test method was developed for response robots, it may be applicable to other domains. Different user communities can set their own thresholds of acceptable performance within the test method for various mission requirements. 5.5 It is recommended that users of this test method consider their particular robot requirements when interpreting the test results. The capability evaluated in this test method alone shall be interpreted according to the scope of this test method and shall not be considered as an overall indication of the capability of the robot’s mobility subsystem nor of the entire robotic system. A single test method only captures the specified single aspect of a robot’s capabilities. A more complete characterization of a robot’s capabilities requires test results from a wider set of test methods.
分类信息
关联关系
研制信息
归口单位: E54.09
相似标准/计划/法规
现行
ASTM E2991/E2991M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Gravel Terrain
评估响应机器人移动性的标准测试方法:横移砾石地形
2017-09-01
现行
ASTM E2828/E2828M-20
Standard Test Method for Evaluating Response Robot Mobility Using Symmetric Stepfields Terrains
用对称阶梯场地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2802/E2802M-21e1
Standard Test Method for Evaluating Response Robot Mobility Using Variable Hurdle Obstacles
用可变跨栏障碍物评价机器人机动性的标准试验方法
2021-03-01
现行
ASTM E3426/E3426M-24
Standard Test Method for Evaluating Aerial Response Robot Endurance
评估空中反应机器人耐久性的标准试验方法
2024-02-01
现行
ASTM E2801-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Gaps
评估应急机器人功能的标准测试方法:移动性:限制区域障碍:差距
2020-01-01
现行
ASTM E2829-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Maneuvering Tasks: Sustained Speed
评估应急机器人功能的标准测试方法:移动性:机动任务:持续速度
2020-01-01
现行
ASTM E2826/E2826M-20
Standard Test Method for Evaluating Response Robot Mobility Using Continuous Pitch/Roll Ramp Terrains
使用连续俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2827/E2827M-20
Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains
用交叉俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2803-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Inclined Planes
评估应急机器人功能的标准测试方法:移动性:密闭区域障碍物:倾斜飞机
2020-01-01
现行
ASTM E2804-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Stairs/Landings
评估应急机器人功能的标准测试方法:移动性:限制区域障碍物:楼梯/着陆
2020-01-01
现行
ASTM E2830-11(2020)
Standard Test Method for Evaluating the Mobility Capabilities of Emergency Response Robots Using Towing Tasks: Grasped Sleds
使用牵引任务评估应急机器人的移动能力的标准测试方法:抓住雪橇
2020-01-01
现行
ASTM E2566-17a
Standard Test Method for Evaluating Response Robot Sensing: Visual Acuity
评估响应机器人感应的标准测试方法:视力
2017-09-01
现行
ASTM E2853/E2853M-22
Standard Test Method for Evaluating Ground Response Robot Capabilities: Search Tasks
评估地面反应机器人能力的标准试验方法:搜索任务
2022-05-01
现行
ASTM E3408/E3408M-23
Standard Test Method for Evaluating Ground Response Robot Capabilities: Dexterity: Linear Inspection
评估地面反应机器人能力的标准试验方法:灵活性:线性检验
2023-09-15
现行
ASTM E3380/E3380M-23
Standard Test Method for Evaluating Ground Response Robot Endurance Using Reproducible Terrains
使用可复制地形评估地面反应机器人耐久性的标准试验方法
2023-04-01
现行
ASTM E2854/E2854M-21
Standard Test Method for Evaluating Response Robot Radio Communications Line-of-Sight Range
评定机器人无线电通信视线范围的标准试验方法
2021-01-01
现行
ASTM E2855-12(2021)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Non-Line-of-Sight Range
评估应急机器人功能的标准测试方法:无线电通信:非视距范围
2021-01-01