1.1
This guide describes tests that may be applied to new or previously used thermocouples for the purpose of verification. Some of the tests perform a suitable verification by themselves, but many tests merely alert the user to serious problems if the thermocouple fails the test. Some of the tests examine inhomogeneity and others detect wire or measuring-junction breakage. For Style U mineral-insulated metal-sheathed (MIMS) thermocouples with ungrounded measuring junctions, this guide includes tests that examine the electrical isolation of the sheath as well as sheath deterioration.
1.2
The first set of tests involves measurement verifications designed to be performed while the thermocouple is in its usage environment. The second set is composed of electrical tests and visual inspections designed to evaluate the functionality of the thermocouple; these tests may be performed either in house or in a calibration laboratory. The third set is made up of homogeneity tests designed to be performed in a calibration laboratory. Some of the tests provide simple methods to identify some, but not all, defective thermocouples, and alone do not suffice to verify a used thermocouple. They may need to be complemented by other tests for a complete verification.
1.3
The reader of this guide should decide which of the described tests need to be performed. This decision is dependent on whether the reader uses thermocouples for temperature measurement or performs thermocouple calibrations in a laboratory. For users of thermocouples, it is recommended that appropriate tests from the first and second sets be performed initially, as they provide immediate on-site verification of the thermocouples. The appropriateness of a test is dependent upon the user’s temperature measurement uncertainty requirements. Some tests may have lower uncertainties in their verification measurements than others. If these tests do not clearly determine the suitability of the thermocouples, they should be sent to a calibration laboratory for performing appropriate tests from the third set, which give the most complete information on the thermocouple homogeneity. For those who perform thermocouple calibrations in a laboratory, it is recommended that appropriate tests from the second and third sets be performed prior to calibration. The appropriateness of a test is dependent on the calibration laboratory’s capability and convenience for performing the test, as well as the characteristics of the unit under test (UUT).
1.4
This guide may be used for base metal and noble metal thermocouples. Some of the methods covered may apply to refractory metal thermocouples but caution is advised as suitable reference devices at high temperatures may not be readily available.
1.5
This guide may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
These verification tests may be performed by users or calibrators of thermocouples. The methods are useful for both new and used thermocouples. They provide a means to assess the accuracy with which a thermocouple is capable of measuring temperature.
5.2
Results from these tests may be used to determine whether to use or discard a thermocouple. If the thermocouple is subsequently used, the test results may be included in the measurement uncertainty budget. In many circumstances, the results of
in-situ
verifications may be used to recalibrate a used thermocouple. Laboratory measurements, on the other hand, may be used only to verify the original thermocouple calibration or to determine the uncertainty of temperature measurements with the tested thermocouple. Laboratory measurements generally do not suffice to determine the emf-versus-temperature response of a thermocouple found to be inhomogeneous.