首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D6877-13(2018)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Monitoring Diesel Particulate Exhaust in the Workplace 工作场所柴油微粒排放监测的标准试验方法
发布日期: 2018-10-01
1.1 本试验方法包括有机碳和元素碳的测定( OC 和 欧共体 )在柴油发动机排气的颗粒分数中,以下称为柴油颗粒物( DPM ). 在石英纤维过滤器上采集工作场所空气样本。该方法也适用于其他类型的碳质气溶胶,并已广泛应用于环境监测。不适合对挥发性或半挥发性成分进行采样。这些成分需要吸附剂才能有效收集。 注1: 环境样品的样品收集和处理程序不同于职业样品。本标准涉及职业监测 DPM 在使用柴油动力设备的工作场所。 1.2 该方法基于热光技术 ( 1. , 2. ) . 2. 物种形成 OC 和 欧共体 通过温度和大气控制以及纠正样品炭化(碳化)的光学特性实现。 1.3 分析37 mm石英纤维过滤器样品的一部分。 该部分的结果用于计算 OC 和 欧共体 在过滤器上。该部分必须代表整个过滤器沉积物。如果沉积物不均匀,应分析两个或多个代表部分的平均值。或者,可以在多个部分中分析整个过滤器,以确定总质量。开口盒式磁带甚至可以提供存款,但可能并不实用。在2升/分钟时,如果没有其他粉尘,则闭面暗盒的结果通常相当于敞面暗盒。 可以采用更高的流速,但在更高流速(例如,5升/分钟)下运行的封闭式暗盒有时由于过滤器中心的颗粒碰撞而产生不均匀的沉积物。根据采样环境,可能需要其他取样器 ( 2- 5. ) . 1.4 计算的检测极限( 详细等级 )取决于介质空白的污染程度 ( 5. ) . A. 详细等级 每厘米约0.2微克碳 2. 当分析应用于在分析前立即清洗的滤纸部分的蔗糖标准溶液时,估计滤纸的厚度。 详细等级 基于清洁后存储的介质空白的s通常更高。 详细等级 基于在商业实验室六个月内分析的一组介质空白 OC =1.2微克/厘米 2. , 欧共体 =0.4微克/厘米 2. 和 总费用 =1.3微克/厘米 2. 哪里 总费用 指总碳( 总费用 = OC + 欧共体 ). 在实践中,实验室提供的LOD估计是基于随样本提交的一组介质空白的结果。为了减少空白可变性(由于缺乏负荷),在引入氧气时分配手动OC-EC拆分。 对于手动拆分,介质空白的SD通常约为0.02–0.03µg EC/cm 2. ,给出约0.06–0.09µg EC/cm的LOD(3×SD空白) 2. . 相应的空气浓度取决于沉积面积(过滤器尺寸)和风量。 1.5 OC-EC 方法是可操作的,这意味着分析程序定义了分析物。与不能纠正有机成分炭化的热技术相比,该测试方法具有更高的选择性和精度。分析方法简单且相对快速(约15分钟)。 分析和数据简化是自动化的,仪器是可编程的(不同的方法可以保存为其他应用的方法)。 1.6 方法(5040) DPM 根据国家职业安全与健康研究所(NIOSH)发布的热光分析。方法更新 ( 3. , 4. ) 自其首次(1996年)在NIOSH分析方法手册中发表以来( NMAM公司 ). 二者都 OC 和 欧共体 由确定 NMAM公司 5040 欧共体 曝光标记(用于 DPM )被推荐是因为 欧共体 是一种更具选择性的暴露测量。全面回顾选择 欧共体 标记在的一章中提供 NMAM公司 ( 5. ) . 1.7 分析所需的热光仪器由私人实验室制造。 3. 与大多数仪器一样,设计仍在不断改进。不同的实验室可能使用不同的仪器型号。 1.8 以国际单位制表示的数值应视为标准值。 本标准不包括其他计量单位。 1.9 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 具体预防说明见 7.1.5 , 8.3 和 12.12.2 . 1.10 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 该测试方法支持先前提出的职业暴露标准 ( 7. , 8. ) 对于 DPM . A. DPM 自那时以来,金属和非金属矿山的接触限值已经颁布,但目前没有针对一般职业环境的限值(拟议限值) ( 7. ) 于2003年从ACGIH意向变更通知(NIC)列表中撤销)。仅在美国,就有100多万工人在职业上受到影响 ( 9 ) . 矿山的暴露标准尤其重要,因为矿工的暴露量通常相当高。 NIOSH公司 ( 9 ) ,国际癌症研究机构 ( 10 ) (IARC),世界卫生组织 ( 11 ) (世界卫生组织),加利福尼亚州环境保护局 ( 12 ) ,美国环境保护局 ( 13 ) (EPA)和国家毒理学计划 ( 14 ) 审查了DPM的动物和人类证据,以及所有被归类为可能人类致癌物或类似名称的柴油废气。2012年,世界卫生组织将柴油废气重新归类为人类致癌物(第1组) ( 15 ) . 此外,在一项针对矿工的研究中,美国国家癌症研究所(NCI)和NIOSH报告称,暴露工人死于肺癌的风险增加 ( 16 , 17 ) . 5.2 该测试方法提供了职业暴露于 DPM . 鉴于流行病学研究对经济和公共健康的影响,准确的风险评估至关重要。NIOSH/NCI对接触柴油废气的矿工的研究提供了肺癌风险的定量估计 ( 16 , 17 ) . 该试验方法用于暴露监测。自出版(1996年)以来,作为 NMAM公司 5040,该方法已常规用于职业监测 ( 5. ) . 5.3 研究表明,空气中的细颗粒物水平与呼吸道疾病和死亡率呈正相关 ( 18- 26 ) . 该测试方法和其他方法已用于EPA空气监测网络和空气污染研究。由于不同的方法产生不同的结果,因此方法标准化对于法规遵从性测定和实验室间数据的有效比较至关重要。 5.4 该试验方法正在用于排放控制试验。
1.1 This test method covers determination of organic and elemental carbon ( OC and EC ) in the particulate fraction of diesel engine exhaust, hereafter referred to as diesel particulate matter ( DPM ). Samples of workplace atmospheres are collected on quartz-fiber filters. The method also is suitable for other types of carbonaceous aerosols and has been widely applied to environmental monitoring. It is not appropriate for sampling volatile or semi-volatile components. These components require sorbents for efficient collection. Note 1: Sample collection and handling procedures for environmental samples differ from occupational samples. This standard addresses occupational monitoring of DPM in workplaces where diesel-powered equipment is used. 1.2 The method is based on a thermal-optical technique ( 1 , 2 ) . 2 Speciation of OC and EC is achieved through temperature and atmosphere control, and an optical feature that corrects for sample charring (carbonization). 1.3 A portion of a 37-mm, quartz-fiber filter sample is analyzed. Results for the portion are used to calculate the total mass of OC and EC on the filter. The portion must be representative of the entire filter deposit. If the deposit is uneven, two or more representative portions should be analyzed for an average. Alternatively, the entire filter can be analyzed, in multiple portions, to determine the total mass. Open-faced cassettes give even deposits but may not be practical. At 2 L/min, closed-face cassettes generally give results equivalent to open-face cassettes if other dusts are absent. Higher flow rates may be employed, but closed-faced cassettes operated at higher flow rates (for example, 5 L/min) sometimes have uneven deposits due to particle impaction at the center of the filter. Other samplers may be required, depending on the sampling environment ( 2- 5 ) . 1.4 The calculated limit of detection ( LOD ) depends on the level of contamination of the media blanks ( 5 ) . A LOD of approximately 0.2-µg carbon per cm 2 of filter was estimated when analyzing a sucrose standard solution applied to filter portions cleaned immediately before analysis. LOD s based on media blanks stored after cleaning are usually higher. LOD s based on a set of media blanks analyzed over a six month period at a commercial laboratory were OC = 1.2 µg/cm 2 , EC = 0.4 µg/cm 2 , and TC = 1.3 µg/cm 2 , where TC refers to total carbon ( TC = OC + EC ). In practice, the LOD estimate provided by a laboratory is based on results for a set of media blanks submitted with the samples. To reduce blank variability (due to lack of loading), a manual OC-EC split is assigned at the time when oxygen is introduced. With manual splits, the SD for media blanks is typically about 0.02–0.03 µg EC/cm 2 , giving LODs (3 × SD blank) from about 0.06–0.09 µg EC/cm 2 . The corresponding air concentration depends on the deposit area (filter size) and air volume. 1.5 OC-EC methods are operational, which means the analytical procedure defines the analyte. The test method offers greater selectivity and precision than thermal techniques that do not correct for charring of organic components. The analysis method is simple and relatively quick (about 15 min). The analysis and data reduction are automated, and the instrument is programmable (different methods can be saved as methods for other applications). 1.6 A method (5040) for DPM based on thermal-optical analysis has been published by the National Institute for Occupational Safety and Health (NIOSH). Method updates ( 3 , 4 ) have been published since its initial (1996) publication in the NIOSH Manual of Analytical Methods ( NMAM ). Both OC and EC are determined by NMAM 5040. An EC exposure marker (for DPM ) was recommended because EC is a more selective measure of exposure. A comprehensive review of the method and rationale for selection of an EC marker are provided in a Chapter of NMAM ( 5 ) . 1.7 The thermal-optical instrument required for the analysis is manufactured by a private laboratory. 3 As with most instrumentation, design improvements continue to be made. Different laboratories may be using different instrument models. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.1.5 , 8.3 , and 12.12.2 . 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 The test method supports previously proposed occupational exposure standards ( 7 , 8 ) for DPM . A DPM exposure limit has since been promulgated for metal and nonmetal mines, but there currently are no limits for general occupational settings (a proposed limit ( 7 ) was withdrawn from the ACGIH Notice of Intended Changes (NIC) list in 2003). In the United States alone, over a million workers are occupationally exposed ( 9 ) . An exposure standard for mines is especially important because miners’ exposures are often quite high. NIOSH ( 9 ) , the International Agency for Research on Cancer ( 10 ) (IARC), the World Health Organization ( 11 ) (WHO), the California Environmental Protection Agency ( 12 ) , the U.S. Environmental Protection Agency ( 13 ) (EPA), and the National Toxicology Program ( 14 ) reviewed the animal and human evidence on DPM and all classified diesel exhaust as a probable human carcinogen or similar designation. In 2012, the WHO reclassified diesel exhaust as carcinogenic to humans (Group 1) ( 15 ) . In addition, in a study of miners, the National Cancer Institute (NCI) and NIOSH reported increased risk of death from lung cancer in exposed workers ( 16 , 17 ) . 5.2 The test method provides a measure of occupational exposure to DPM . Given the economic and public health impact of epidemiological studies, accurate risk assessment is critical. The NIOSH/NCI study of miners exposed to diesel exhaust provides quantitative estimates of lung cancer risk ( 16 , 17 ) . The test method was used for exposure monitoring. Since publication (in 1996) as NMAM 5040, the method has been routinely used for occupational monitoring ( 5 ) . 5.3 Studies indicate a positive association between airborne levels of fine particles and respiratory illness and mortality ( 18- 26 ) . The test method and others have been used for EPA air monitoring networks and air pollution studies. Because different methods produce different results, method standardization is essential for regulatory compliance determinations and valid comparisons of interlaboratory data. 5.4 The test method is being applied for emission-control testing.
分类信息
关联关系
研制信息
归口单位: D22.04
相似标准/计划/法规