首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D7007-24
到馆提醒
收藏跟踪
购买正版
Standard Practices for Electrical Methods for Locating Leaks in Geomembranes Covered with Water or Earthen Materials 水或土材料覆盖的土工膜中定位泄漏的电气方法的标准实施规程
发布日期: 2024-03-01
1.1 这些实践包括使用电气方法定位覆盖有水或土材料的土工膜中的泄漏的标准程序。为清楚起见,本规程使用术语“泄漏”来表示已安装土工膜中的孔洞、穿孔、撕裂、刀切、接缝缺陷、裂缝和类似缺口(定义见 3.2.9 ). 1.2 这些做法旨在确保以标准化水平的泄漏检测能力进行泄漏位置调查。为了进行进一步的创新,并且由于各种泄漏位置从业者使用各种各样的程序和设备来进行这些调查,因此还使用了基于性能的协议,该协议规定了最低泄漏检测标准。 1.3 然后,应使用演示的设备、程序和测量参数进行测量。在泄漏检测距离测试期间没有最小信号强度的情况下,提供了最小测量密度规范。 或者,可以简单地使用最小测量密度。 1.4 为覆盖有水的土工膜和覆盖有土工材料的土工薄膜的泄漏位置调查提供了单独的程序。对于使用实际泄漏和人工泄漏的泄漏检测距离测试,给出了单独的程序。 1.5 中提供了土壤覆盖调查数据分析方法的示例作为指导 附录X1 . 1.6 泄漏位置调查可用于安装在水池、池塘、储罐、矿石和废物垫、垃圾填埋池、垃圾填埋盖和其他控制设施中的土工膜。该程序适用于由聚乙烯、聚丙烯、聚氯乙烯、氯磺化聚乙烯、沥青材料和其他电绝缘材料制成的土工膜。 1.7 以国际单位制表示的数值应视为标准。 本标准不包括其他计量单位。 1.8 ( 警告 用于土工膜泄漏定位的电气方法可能使用高电压,导致触电或触电的可能性。由于作业可能在水中或附近进行,这种危险可能会增加。特别地,在水或土材料与接地或任何接地导体之间可能存在高电压。这些程序可能非常危险,并可能导致人身伤害或死亡。土工膜泄漏定位所用的电气方法只能由合格且有经验的人员尝试。必须采取适当的安全措施来保护泄漏位置操作员以及现场的其他人员。) 1.9 本标准并不旨在解决与其使用相关的所有安全问题(如有)。 本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.10 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 4.1 土工膜被用作不可渗透的屏障,以防止液体从垃圾填埋场、池塘和其他容器中泄漏。液体中可能含有污染物,如果释放,可能会对环境造成损害。泄漏的液体会侵蚀路基,造成进一步的损坏。泄漏可能导致产品损失,或以其他方式阻止安装达到预期的遏制目的。 出于这些原因,希望土工膜具有尽可能小的泄漏。 4.2 土工膜泄漏可能由路基质量差、铺设在土工膜上的材料质量差、事故、工艺差、制造缺陷和疏忽造成。 4.3 仅用水覆盖的土工膜泄漏的最主要原因与施工活动有关,包括放置在土工膜上的泵和设备、意外穿孔以及交通越过土工膜或路基上的岩石或碎片造成的穿孔。 4.4 覆盖土工材料的土工膜泄漏的最重要原因是在土工膜上铺设土工材料时机械造成的施工损坏。这种损坏也可能破坏内衬系统的附加层,例如土工合成粘土内衬。 4.5 电气泄漏定位方法是检测和定位泄漏的有效最终质量保证措施。如果未遵守调查区域准备的任何要求,则泄漏敏感性可能会降低。第节描述了最佳勘察区域条件 6. .
1.1 These practices cover standard procedures for using electrical methods to locate leaks in geomembranes covered with water or earthen materials. For clarity, this practice uses the term “leak” to mean holes, punctures, tears, knife cuts, seam defects, cracks, and similar breaches in an installed geomembrane (as defined in 3.2.9 ). 1.2 These practices are intended to ensure that leak location surveys are performed with a standardized level of leak detection capability. To allow further innovations, and because various leak location practitioners use a wide variety of procedures and equipment to perform these surveys, performance-based protocol are also used that specify minimum leak detection criteria. 1.3 The survey shall then be conducted using the demonstrated equipment, procedures, and survey parameters. In the absence of the minimum signal strength during leak detection distance testing, a minimum measurement density specification is provided. Alternatively, the minimum measurement density may simply be used. 1.4 Separate procedures are given for leak location surveys for geomembranes covered with water and for geomembranes covered with earthen materials. Separate procedures are given for leak detection distance tests using actual and artificial leaks. 1.5 Examples of methods of data analysis for soil-covered surveys are provided as guidance in Appendix X1 . 1.6 Leak location surveys can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other electrically insulating materials. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 ( Warning— The electrical methods used for geomembrane leak location could use high voltages, resulting in the potential for electrical shock or electrocution. This hazard might be increased because operations might be conducted in or near water. In particular, a high voltage could exist between the water or earthen material and earth ground, or any grounded conductor. These procedures are potentially VERY DANGEROUS, and can result in personal injury or death. The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures must be taken to protect the leak location operators as well as other people at the site.) 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Geomembranes are used as impermeable barriers to prevent liquids from leaking from landfills, ponds, and other containments. The liquids may contain contaminants that, if released, can cause damage to the environment. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose. For these reasons, it is desirable that the geomembrane have as little leakage as practical. 4.2 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness. 4.3 The most significant causes of leaks in geomembranes that are covered with only water are related to construction activities, including pumps and equipment placed on the geomembrane, accidental punctures, and punctures caused by traffic over rocks or debris on the geomembrane or in the subgrade. 4.4 The most significant cause of leaks in geomembranes covered with earthen materials is construction damage caused by machinery that occurs while placing the earthen material on the geomembrane. Such damage also can breach additional layers of the lining system such as geosynthetic clay liners. 4.5 Electrical leak location methods are an effective final quality assurance measure to detect and locate leaks. If any of the requirements for survey area preparation is not adhered to, then leak sensitivity could be diminished. Optimal survey area conditions are described in Section 6 .
分类信息
关联关系
研制信息
归口单位: D35.10
相似标准/计划/法规
现行
ASTM D7852-23
Standard Practice for Use of an Electrically Conductive Geotextile for Leak Location Surveys
泄漏位置调查用导电土工织物的使用标准实施规程
2023-06-15
现行
ASTM D8551-24a
Standard Practices for Permanent Monitoring Systems for Electrical Leak Detection and Location
电气泄漏检测和定位用永久监测系统的标准实施规程
2024-06-01
现行
ASTM D7703-22
Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance Method
使用水枪法在外露土工膜上确定漏电位置的标准实施规程
2022-07-01
现行
ASTM D7002-22
Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Puddle Method
使用水坑法在外露土工膜上确定漏电位置的标准实施规程
2022-07-01
现行
ASTM D7953-20(2024)
Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Arc Testing Method
使用电弧测试方法对暴露的土工膜进行电气泄漏定位的标准做法
2024-11-01
现行
ASTM D8265-23
Standard Practices for Electrical Methods for Mapping Leaks in Installed Geomembranes
已安装土工膜中绘制泄漏的电气方法的标准实施规程
2023-11-01
现行
ASTM D7240-18
Standard Practice for Electrical Leak Location Using Geomembranes with an Insulating Layer in Intimate Contact with a Conductive Layer via Electrical Capacitance Technique (Conductive-Backed Geomembrane Spark Test)
使用带有绝缘层的土工膜通过电容技术与导电层紧密接触的电泄漏定位的标准实践(导电背衬土工膜火花测试)
2018-02-01