1.1
本指南提供了与算法和实现过程相关的信息,但不包含完整的算法集。算法、指令、程序和示例位于相关的补充附件中。通用原油、精炼产品和润滑油的温度和压力体积修正系数的体积修正系数(VCF)附件提供了校正温度和压力对液态烃密度和体积影响的算法和实施程序。本标准不考虑液化天然气(NGL)和液化石油气(LPG),但可在API中找到
MPMS
第11.2.4/GPA 8217章天然气和液化石油气的温度校正。由于VCF的这种附件将应用于各种应用,CTL的输出参数,
F
p
、CPL和CTPL可按其他标准的规定使用。
1.2
包括VCF附件中的压力校正代表了1980年石油测量表中给出的“仅温度”校正系数的一个重要变化。然而,如果压力为一个大气压(标准压力),则没有压力校正,标准/附件将给出与1980年石油测量表一致的CTL值。
1.3
VCF的附件涵盖了将输入数据转换为生成CTL的一般程序,
F
p
、CPL和CTPL在用户指定的基准温度和压力下的值(
T
b
,
P
b
). 计算体积修正系数包括两组程序:一组用于以常用单位表示的数据(温度以°F为单位,压力以psig为单位);另一种是公制单位(温度单位为°C,压力单位为kPa或bar)。
注1:
与1980年的石油测量表不同,公制程序要求首先使用习惯单位的程序来计算60℃时的密度 °F。然后进一步校正该值,以获得公制输出。公制程序现在包括基准温度20 除15°C外 °C。
1.4
VCF附件中的程序识别三种不同的商品组:原油、精炼产品和润滑油。还提供了一种用于确定特殊应用的体积修正的程序,其中广义商品组的参数可能无法充分代表液体的热膨胀特性,并且通过实验确定了精确的热膨胀系数。测定变性乙醇体积校正因子(VCF)的程序可在API中找到
MPMS
第11.3.3章,其他碳氢化合物性质变性乙醇密度和体积修正系数,3
rd
版本测定汽油和变性乙醇混合物体积修正系数(VCF)的程序可在API中找到
MPMS
第11.3.4章,其他碳氢化合物特性变性乙醇和汽油成分混合密度和体积修正系数,1
圣
版本
1.5
以国际单位制或英寸-磅单位表示的数值应单独视为标准值。每个系统中规定的值不一定是精确的等价物;因此,为确保符合本标准,每个系统应独立使用,且两个系统的值不得组合。
1.6
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
5.1
VCF附加项的扩展极限在习惯单位和公制单位的混合术语中定义。
表1
显示了定义极限及其相关单位
粗体斜体
. 也如所示
表1
是否将极限转换为其等效单位(如果是密度,则为其他基准温度)。
5.2
请注意,只有中所示的定义值的精度级别
表1
是正确的。显示转换单位的其他值已四舍五入到所示的有效数字;作为舍入值,它们在数值上可能刚好超出定义值确定的实际限制。
5.3
表2
提供历史表格名称和VCF附件中相应部分之间的交叉引用。注意程序第11段。
1.6.3(美国惯用单位)和11.1.7.3(公制单位)提供了将在线密度测量值从带电条件修正到基本条件的方法,然后计算连续体积修正到基本条件的CTPL系数。
5.4
当使用玻璃比重计测量液体密度时,必须进行特殊校正,以考虑当温度不同于校准比重计时玻璃的热膨胀。1980年的CTL表格具有修正玻璃比重计读数的通用方程,这些修正是印刷奇数表格的一部分。然而,校正玻璃比重计读数的详细程序超出了VCF附件的范围。用户应参考API的相应章节
MPMS
第9章或其他适当的密度/比重计标准作为指导。
5.5
VCF附件中给出的一组相关性旨在用于包含原油、精炼产品或润滑油的石油流体,这些油在正常操作条件下是单相液体。此处列出的液体分类是行业中使用的典型术语,但当地的命名可能有所不同。这份清单是说明性的,并不意味着包罗万象。
5.6
原油-
如果原油密度在-10°API到100°API之间,则认为其符合商品组通用原油。为运输或储存目的而稳定的原油以及API重力在该范围内的原油被视为原油组的一部分。此外,航空喷气机B(JP-4)最好用原油相关性表示。
5.7
精制产品-
如果流体属于精制产品组之一,则认为精制产品符合广义精制产品的商品组。注意,产品描述符是泛化的。某些产品的商业规格范围可能将其密度部分置于相邻类别内(例如,低密度柴油可能位于喷气燃料类别中)。在这种情况下,乘积应该分配给与其密度相适应的类,而不是其描述符。这些组的定义如下:
5.7.1
汽油-
基本密度范围约在50°API和85°API之间的车用汽油和未加工汽油调和油。这类物质包括具有商业标识的物质:优质汽油、无铅汽油、汽油、透明汽油、低硫汽油-
铅气、车用汽油、催化剂气、烷基化物、催化裂化汽油、石脑油、改性汽油和航空汽油。
5.7.2
喷气燃料-
喷气燃料、煤油和斯托达德溶剂,基本密度范围约为37°API至50°API。该类别包括具有商业标识的物质:航空煤油K1和K2、航空喷气机A和A-1、煤油、斯托达德溶剂、JP-5和JP-8。
5.7.3
燃料油-
基础密度范围在-10°API和37°API之间的柴油、加热油和燃油。该类物质包括具有商业标识的物质:6号燃料油、燃料油PA、低硫燃料油、LT(低温)燃料油、燃料油、燃料油LLS(轻低硫)、2号炉油、炉油、汽车柴油、瓦斯油、1号。 2燃烧器燃料、柴油、取暖油和优质柴油。
5.8
润滑油-
如果润滑油是通过蒸馏或沥青沉淀从原油馏分中提取的基础油,则认为其符合商品组通用润滑油。作为VCF的附加物,润滑油的初始沸点大于700 华氏度(370 °C),密度约在-10°API到45°API之间。
5.9
特殊应用-
被指定为特殊应用类别的液体通常是相对纯净的产品或具有稳定(不变)化学成分的均质混合物,其来源于石油(或以石油为基础,含有少量其他成分),并经过测试以确定特定流体的特定热膨胀系数。在以下情况下,应考虑使用这些表格:
5.9.1
广义商品群的参数被怀疑不能充分代表液体的热膨胀特性。
5.9.2
通过实验可以确定精确的热膨胀系数。建议至少使用十个温度/密度数据点来使用此方法。有关根据测量密度数据计算热膨胀系数的程序,请参阅VCF附件的11.1.5.2。
5.9.3
买卖双方同意,就其目的而言,可以使用针对交易中涉及的流动性专门测量的因子来获得更大程度的权益。
5.10
有关具体烃类液体实施程序适用性的完整说明,请参阅VCF附件中的第11.1.2.4和11.1.2.5段。
1.1
This guide provides information related to the algorithm and implementation procedure but does not contain the full set of algorithms. The algorithms, instructions, procedures, and examples are located in the associated supplementary adjuncts. The Adjunct for Volume Correction Factors (VCF) for temperature and pressure volume correction factors for generalized crude oils, refined products, and lubricating oils provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons. Natural gas liquids (NGLs) and liquefied petroleum gases (LPGs) are excluded from consideration in this standard but may be found in API
MPMS
Chapter 11.2.4/GPA 8217 Temperature Correction for NGL and LPG. As this Adjunct for VCF will be applied to a variety of applications, the output parameters of CTL,
F
p
, CPL, and CTPL may be used as specified in other standards.
1.2
Including the pressure correction in the Adjunct for VCF represents an important change from the “temperature only” correction factors given in the 1980 Petroleum Measurement Tables. However, if the pressure is one atmosphere (the standard pressure), then there is no pressure correction and the standard/adjunct(s) will give CTL values consistent with the 1980 Petroleum Measurement Tables.
1.3
The Adjunct for VCF covers general procedures for the conversion of input data to generate CTL,
F
p
, CPL, and CTPL values at the user-specified base temperature and pressure (
T
b
,
P
b
). Two sets of procedures are included for computing volume correction factor: one set for data expressed in customary units (temperature in °F, pressure in psig); the other for the metric system of units (temperature in °C, pressure in kPa or bar).
Note 1:
In contrast to the 1980 Petroleum Measurement Tables, the metric procedures require the procedure for customary units be used first to compute density at 60 °F. This value is then further corrected to give the metric output. The metric procedures now incorporate the base temperature of 20 °C in addition to 15 °C.
1.4
The procedures in the Adjunct for VCF recognize three distinct commodity groups: crude oil, refined products, and lubricating oils. A procedure is also provided for determining volume correction for special applications where the generalized commodity groups’ parameters may not adequately represent the thermal expansion properties of the liquid and a precise thermal expansion coefficient has been determined by experiment. Procedures for determining Volume Correction Factors (VCF) for Denatured Ethanol can be found in API
MPMS
Chapter 11.3.3, Miscellaneous Hydrocarbon Properties—Denatured Ethanol Density and Volume Correction Factors, 3
rd
edition. Procedures for determining Volume Correction Factors (VCF) for Gasoline and Denatured Ethanol Blends can be found in API
MPMS
Chapter 11.3.4, Miscellaneous Hydrocarbon Properties—Denatured Ethanol and Gasoline Component Blend Densities and Volume Correction Factors, 1
st
edition.
1.5
The values stated in either SI units or inch‐pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
The expanded limits of the Adjunct for VCF are defined in a mixture of terms of customary and metric units.
Table 1
shows the defining limits and their associated units in
bold italics
. Also shown in
Table 1
are the limits converted to their equivalent units (and, in the case of the densities, other base temperatures).
5.2
Note that only the precision levels of the defining values shown in
Table 1
are correct. The other values showing converted units have been rounded to the significant digits shown; as rounded values, they may numerically fall just outside of the actual limits established by the defining values.
5.3
Table 2
provides a cross-reference between the historical table designations and the corresponding section in the Adjunct for VCF. Note that procedure paragraphs 11.1.6.3 (U.S. customary units) and 11.1.7.3 (metric units) provide methods for correcting on-line density measurements from live conditions to base conditions and then to compute CTPL factors for continuous volume corrections to base conditions.
5.4
When a glass hydrometer is used to measure the density of a liquid, special corrections must be made to account for the thermal expansion of the glass when the temperature is different from that at which the hydrometer was calibrated. The 1980 CTL Tables had generalized equations to correct glass hydrometer readings, and these corrections were part of the printed odd-numbered tables. However, detailed procedures to correct a glass hydrometer reading are beyond the scope of the Adjunct for VCF. The user should refer to the appropriate sections of API
MPMS
Chapter 9 or other appropriate density/hydrometer standards for guidance.
5.5
The set of correlations given in the Adjunct for VCF is intended for use with petroleum fluids comprising either crude oils, refined products, or lubricating oils that are single-phase liquids under normal operating conditions. The liquid classifications listed here are typical terms used in the industry, but local nomenclature may vary. The list is illustrative and is not meant to be all-inclusive.
5.6
Crude Oils—
A crude oil is considered to conform to the commodity group Generalized Crude Oils if its density falls in the range between approximately –10°API to 100°API. Crude oils that have been stabilized for transportation or storage purposes and whose API gravities lie within that range are considered to be part of the Crude Oil group. Also, aviation Jet B (JP-4) is best represented by the Crude Oil correlation.
5.7
Refined Products—
A refined product is considered to conform to the commodity group of Generalized Refined Products if the fluid falls within one of the refined product groups. Note the product descriptors are generalizations. The commercial specification ranges of some products may place their densities partly within an adjacent class (for example, a low-density diesel may lie in the jet fuel class). In such cases, the product should be allocated to the class appropriate to its density, not its descriptor. The groups are defined as follows:
5.7.1
Gasoline—
Motor gasoline and unfinished gasoline blending stock with a base density range between approximately 50°API and 85°API. This group includes substances with the commercial identification of: premium gasoline, unleaded gasoline, motor spirit, clear gasoline, low-lead gas, motor gasoline, catalyst gas, alkylate, catalytic cracked gasoline, naphtha, reformulated gasoline, and aviation gasoline.
5.7.2
Jet Fuels—
Jet fuels, kerosene, and Stoddard solvents with a base density range between approximately 37°API and 50°API. This group includes substances with the commercial identification of: aviation kerosene K1 and K2, aviation Jet A and A-1, kerosene, Stoddard solvent, JP-5, and JP-8.
5.7.3
Fuel Oils—
Diesel oils, heating oils, and fuel oils with a base density range between approximately –10°API and 37°API. This group includes substances with the commercial identification of: No. 6 fuel oil, fuel oil PA, low-sulfur fuel oil, LT (low temperature) fuel oil, fuel oil, fuel oils LLS (light low sulfur), No. 2 furnace oil, furnace oil, auto diesel, gas oil, No. 2 burner fuel, diesel fuel, heating oil, and premium diesel.
5.8
Lubricating Oils—
A lubricating oil is considered to conform to the commodity group Generalized Lubricating Oils if it is a base stock derived from crude oil fractions by distillation or asphalt precipitation. For the purpose of the Adjunct for VCF, lubricating oils have initial boiling points greater than 700 °F (370 °C) and densities in the range between approximately –10°API to 45°API.
5.9
Special Applications—
Liquids that are assigned the special applications category are generally relatively pure products or homogeneous mixtures with stable (unchanging) chemical composition that are derived from petroleum (or are petroleum-based with minor proportions of other constituents) and have been tested to establish a specific thermal expansion factor for the particular fluid. These tables should be considered for use when:
5.9.1
The generalized commodity groups' parameters are suspected of not adequately representing the thermal expansion properties of the liquid.
5.9.2
A precise thermal expansion coefficient can be determined by experiment. A minimum of ten temperature/density data points is recommended to use this method. See 11.1.5.2 of the Adjunct for VCF for the procedure to calculate the thermal expansion coefficient from measured density data.
5.9.3
Buyer and seller agree that, for their purpose, a greater degree of equity can be obtained using factors specifically measured for the liquid involved in the transaction.
5.10
Refer to paragraphs 11.1.2.4 and 11.1.2.5 in the Adjunct for VCF for a complete description of the suitability of the implementation procedures for specific hydrocarbon liquids.