首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
历史 ASTM ISO/ASTM51649-15
到馆提醒
收藏跟踪
购买正版
Standard Practice for Dosimetry in an Electron Beam Facility for Radiation Processing at Energies Between 300 keV and 25 MeV 能量在300kev和25mev之间辐射处理用电子束设备中剂量测定的标准实施规程
发布日期: 2015-01-01
1.1 本规程概述了在电子束设施的安装鉴定(IQ)、操作鉴定(OQ)和性能鉴定(PQ)以及常规处理中应遵循的剂量学程序。 1.2 本实践中涵盖的电子束能量范围在300千电子伏和25兆电子伏之间,尽管对其他能量也有一些讨论。 1.3 剂量测定只是遵守辐射处理应用中使用的良好制造规范的全面质量保证计划的一个组成部分。特定应用可能需要除剂量测定外的其他措施,如保健产品灭菌和食品保存。 1.4 医疗保健产品的辐射灭菌和食品的辐射有具体标准。 关于医疗保健产品的辐射灭菌,请参阅ISO 11137-1(要求)和ISO 11137-3(剂量学方面的指南)。食品辐照见ISO 14470。在这些标准涵盖的领域,它们优先。有关食品有效或监管剂量限制的信息不在本规程范围内(见ASTM指南) F1355 , F1356 , F1736 和 F1885 ). 1.5 本文件是一套标准之一,为在辐射处理中正确实施和使用剂量测定提供了建议。本标准旨在与ISO/ASTM一起阅读 52628 ,“辐射处理中剂量测定的实施规程”。 注1: 有关常规剂量测定系统的校准指南,请参阅ISO/ASTM惯例 51261 . 有关使用特定剂量测定系统的进一步指导,请参阅相关ISO/ASTM实践。有关脉冲辐射的辐射剂量测定的讨论,请参阅ICRU报告34。 1.6 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全和健康实践,并确定监管要求的适用性。 ====意义和用途====== 4.1 各种产品和材料在电子束设施中以预先确定的剂量进行常规辐照,以保持或修改其特性。剂量测定要求可能因辐射过程和产品的最终用途而异。 可使用剂量测定的部分工艺列表如下所示。 4.1.1 单体聚合和单体接枝到聚合物上, 4.1.2 聚合物的交联或降解, 4.1.3 复合材料的固化, 4.1.4 保健品的灭菌, 4.1.5 消费品消毒, 4.1.6 食品辐照(寄生虫和病原体控制、杀虫和延长保质期), 4.1.7 控制饮用水中的病原体和毒素, 4.1.8 控制液体或固体废物中的病原体和毒素, 4.1.9 半导体器件特性的修改, 4.1.10 宝石和其他材料的颜色增强,以及 4.1.11 材料辐射效应研究。 4.2 剂量学用于监测辐照过程。 注2: 规定的辐射过程(如医疗保健产品的灭菌)需要具有测量可追溯性和已知不确定性的剂量测定(见ISO 11137-1和参考文献) ( 1- 3. 6. ) )和食品保存(见ISO 14470和参考 ( 4. ) ). 这对于其他过程可能不那么重要,例如聚合物改性,可以通过辐照材料的物理和化学性质的变化来评估。然而,常规剂量测定可用于监测治疗过程的再现性。 注3: 测量剂量通常被描述为水中的吸收剂量。一次性使用医疗器械和食品中常见的材料在电离辐射吸收方面大致相当于水。 除水以外的材料中的吸收剂量可通过应用转换因子来确定 ( 5. , 6. ) . 4.3 辐照过程通常需要最小吸收剂量才能达到预期效果。在仍然满足其功能或监管规范的情况下,产品可能还有一个最大剂量限制。剂量学是必不可少的,因为它用于在研究和开发阶段确定这两个限值,也用于确认产品在这些限值内常规辐照。 4.4 产品内的剂量分布取决于工艺负荷特性、辐照条件和操作参数。 4.5 剂量测定系统必须按照国家或国际标准进行校准,并且必须知道测量不确定度。 4.6 在使用辐射设施之前,必须确定其特征,以确定其在可重复提供已知可控剂量方面的有效性。这包括测试和校准工艺设备和剂量测定系统。 4.7 在开始辐射过程之前,必须对其进行验证。这涉及到执行安装鉴定(IQ)、操作鉴定(OQ)和性能鉴定(PQ),根据这些过程参数确定工艺参数,以确保产品在规定范围内辐照。 4.8 为了确保在经过验证的过程中提供一致且可重复的剂量,常规过程控制要求为辐照之前、期间和之后进行的活动建立文件化的程序,例如确保一致的产品装载配置,以及关键操作参数和常规剂量测定的监测。
1.1 This practice outlines dosimetric procedures to be followed in installation qualification (IQ), operational qualification (OQ) and performance qualifications (PQ), and routine processing at electron beam facilities. 1.2 The electron beam energy range covered in this practice is between 300 keV and 25 MeV, although there are some discussions for other energies. 1.3 Dosimetry is only one component of a total quality assurance program for adherence to good manufacturing practices used in radiation processing applications. Other measures besides dosimetry may be required for specific applications such as health care product sterilization and food preservation. 1.4 Specific standards exist for the radiation sterilization of health care products and the irradiation of food. For the radiation sterilization of health care products, see ISO 11137-1 (Requirements) and ISO 11137-3 (Guidance on dosimetric aspects). For irradiation of food, see ISO 14470. In those areas covered by these standards, they take precedence. Information about effective or regulatory dose limits for food products is not within the scope of this practice (see ASTM Guides F1355 , F1356 , F1736 , and F1885 ). 1.5 This document is one of a set of standards that provides recommendations for properly implementing and utilizing dosimetry in radiation processing. It is intended to be read in conjunction with ISO/ASTM 52628 , “Practice for Dosimetry in Radiation Processing”. Note 1: For guidance in the calibration of routine dosimetry systems, see ISO/ASTM Practice 51261 . For further guidance in the use of specific dosimetry systems, see relevant ISO/ASTM Practices. For discussion of radiation dosimetry for pulsed radiation, see ICRU Report 34. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use. ====== Significance And Use ====== 4.1 Various products and materials are routinely irradiated at pre-determined doses at electron beam facilities to preserve or modify their characteristics. Dosimetry requirements may vary depending on the radiation process and end use of the product. A partial list of processes where dosimetry may be used is given below. 4.1.1 Polymerization of monomers and grafting of monomers onto polymers, 4.1.2 Cross-linking or degradation of polymers, 4.1.3 Curing of composite materials, 4.1.4 Sterilization of health care products, 4.1.5 Disinfection of consumer products, 4.1.6 Food irradiation (parasite and pathogen control, insect disinfestation, and shelf-life extension), 4.1.7 Control of pathogens and toxins in drinking water, 4.1.8 Control of pathogens and toxins in liquid or solid waste, 4.1.9 Modification of characteristics of semiconductor devices, 4.1.10 Color enhancement of gemstones and other materials, and 4.1.11 Research on radiation effects on materials. 4.2 Dosimetry is used as a means of monitoring the irradiation process. Note 2: Dosimetry with measurement traceability and known uncertainty is required for regulated radiation processes such as sterilization of health care products (see ISO 11137-1 and Refs ( 1- 3 6 ) ) and preservation of food (see ISO 14470 and Ref ( 4 ) ). It may be less important for other processes, such as polymer modification, which may be evaluated by changes in the physical and chemical properties of the irradiated materials. Nevertheless, routine dosimetry may be used to monitor the reproducibility of the treatment process. Note 3: Measured dose is often characterized as absorbed dose in water. Materials commonly found in single-use disposable medical devices and food are approximately equivalent to water in the absorption of ionizing radiation. Absorbed dose in materials other than water may be determined by applying conversion factors ( 5 , 6 ) . 4.3 An irradiation process usually requires a minimum absorbed dose to achieve the desired effect. There may also be a maximum dose limit that the product can tolerate while still meeting its functional or regulatory specifications. Dosimetry is essential, since it is used to determine both of these limits during the research and development phase, and also to confirm that the product is routinely irradiated within these limits. 4.4 The dose distribution within the product depends on process load characteristics, irradiation conditions, and operating parameters. 4.5 Dosimetry systems must be calibrated with traceability to national or international standards and the measurement uncertainty must be known. 4.6 Before a radiation facility is used, it must be characterized to determine its effectiveness in reproducibly delivering known, controllable doses. This involves testing and calibrating the process equipment, and dosimetry system. 4.7 Before a radiation process is commenced it must be validated. This involves execution of Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ), based on which process parameters are established that will ensure that product is irradiated within specified limits. 4.8 To ensure consistent and reproducible dose delivery in a validated process, routine process control requires that documented procedures are established for activities to be carried out before, during and after irradiation, such as for ensuring consistent product loading configuration and for monitoring of critical operating parameters and routine dosimetry.
分类信息
关联关系
研制信息
归口单位: E61.03
相似标准/计划/法规
现行
GOST 34157-2017
Руководство по дозиметрии при обработке пищевых продуктов электронными пучками и рентгеновским (тормозным) излучением
用于食品加工的电子束和X射线(Bre致辐射)照射设备中的剂量法的标准实践
2017-06-07
现行
ASTM ISO/ASTM51818-20
Standard Practice for Dosimetry in an Electron Beam Facility for Radiation Processing at Energies Between 80 and 300 keV
用于在能量在80和300keV之间的辐射处理的电子束设备中的剂量测定的标准做法
2019-04-01
现行
GOST R ISO/АСТМ 51431-2012
Руководство по дозиметрии при обработке пищевых продуктов электронными пучками и рентгеновским (тормозным) излучением
用于食品加工的电子束和X射线(bre致辐射)照射设备中的剂量测定
现行
BS ISO/ASTM 51818-2020
Practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 k
能量在80和300K之间的辐射处理用电子束设施中剂量测定的实施规程
2020-07-06
现行
ISO/ASTM 51818-2020
Practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 keV
实验用于电子束设备中的剂量测定法 用于在80和300keV之间的辐射处理
2020-06-30
现行
BS ISO 15569-1998
Practice for dosimetry in an electron-beam facility for radiation processing at energies between 300 keV and 25 MeV
能量在300千电子伏和25兆电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
1999-08-15
现行
BS ISO 15573-1998
Practice for dosimetry in an electron-beam facility for radiation processing at energies between 80 keV and 300 keV
能量在80千电子伏和300千电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
1999-08-15
现行
BS 04/30109485 DC
ISO 51431. Practice for dosimetry in electron beam and X-ray (bremsstrahlung) irradiation facilities for food processing
ISO 51431 食品加工用电子束和X射线(韧致辐射)辐照设备的剂量测定实施规程
2004-08-18
现行
ISO/ASTM 51649-2015
Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV
在300keV至25MeV之间的能量下进行辐射处理的电子束设备中的剂量测定法
2015-03-17
现行
ASTM ISO/ASTM51631-20
Standard Practice for Use of Calorimetric Dosimetry Systems for Dose Measurements and Routine Dosimetry System Calibration in Electron Beams
电子束中剂量测量和常规剂量测定系统校准用量热剂量测定系统的使用标准实施规程
2019-05-15
现行
BS 12/30273487 DC
BS ISO 51818. Practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 keV
BS ISO 51818 能量在80和300千电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
2012-10-30
现行
BS 04/30118691 DC
BS ISO ASTM 51649. Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV
BS ISO ASTM 51649 能量在300千电子伏和25兆电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
2004-08-18