首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM F2052-21
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment 在磁共振环境中测量医疗设备上磁感应位移力的标准试验方法
发布日期: 2021-10-01
1.1 本试验方法包括测量医疗器械上静态磁场梯度(空间磁场梯度)产生的磁感应位移力,并将该力与医疗器械重量进行比较。 1.2 本试验方法不解决其他可能的安全问题,包括但不限于:磁感应扭矩、射频(RF)加热、感应加热、噪声、设备之间的相互作用以及设备和磁共振(MR)系统的功能性问题。 1.3 本测试方法适用于可从字符串挂起的设备。本测试方法不包括不能从字符串挂起的设备。试验期间,悬挂装置的绳子的重量必须小于1 % 测试设备的重量。 1.4 本试验方法应在水平钻孔MR系统中进行,静态磁场水平定向并平行于MR系统孔。 1.5 以国际单位制表示的数值应视为标准值。 本标准不包括其他计量单位。 1.6 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本试验方法是确定医疗器械的存在是否可能在磁共振检查期间或磁共振环境中对个人造成伤害所需的方法之一。应解决的其他安全问题包括但不限于:磁感应扭矩(见试验方法 F2213页 )和射频(RF)加热(见试验方法 F2182页 ). 实践中的术语和图标 F2503 应用于标记设备在磁共振环境中的安全性。 5.2 如果指定磁场条件下的最大磁感应位移力(参见 附录X3 )小于由于重力(其重量)作用在设备上的力,假设应用磁感应力施加的任何风险不大于地球引力场中正常日常活动施加的任何风险。本声明不构成验收标准;它是作为保守的参考点提供的。可能可以接受更大的磁感应位移力,并且在特定情况下不会伤害患者或其他个人。 注2: 例如,对于正在或可能受到大于重力力的磁位移力的植入装置,可以考虑植入物的位置、周围组织的性质和体内固定方式。对于磁感应力大于重力的非植入设备,应考虑减轻抛射物风险,这可能包括固定或栓系设备,或将其从磁共振环境中排除,使其不会成为抛射物。 5.3 最大静态磁场强度和空间磁场梯度随磁流变系统的不同而变化。 附录X3 为计算允许的静态磁场强度和空间磁场梯度提供指导。 5.4 仅此测试方法不足以确定设备在MR环境中是否安全。
1.1 This test method covers the measurement of the magnetically induced displacement force produced by static magnetic field gradients (spatial field gradient) on medical devices and the comparison of that force to the weight of the medical device. 1.2 This test method does not address other possible safety issues which include, but are not limited to: issues of magnetically induced torque, radiofrequency (RF) heating, induced heating, acoustic noise, interaction among devices, and the functionality of the device and the magnetic resonance (MR) system. 1.3 This test method is intended for devices that can be suspended from a string. Devices which cannot be suspended from a string are not covered by this test method. The weight of the string from which the device is suspended during the test must be less than 1 % of the weight of the tested device. 1.4 This test method shall be carried out in a horizontal bore MR system with a static magnetic field oriented horizontally and parallel to the MR system bore. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method is one of those required to determine if the presence of a medical device may cause injury to individuals during an MR examination or in the MR environment. Other safety issues which should be addressed include, but may not be limited to: magnetically induced torque (see Test Method F2213 ) and radiofrequency (RF) heating (see Test Method F2182 ). The terms and icons in Practice F2503 should be used to mark the device for safety in the magnetic resonance environment. 5.2 If the maximum magnetically induced displacement force for the specified magnetic field conditions (see Appendix X3 ) is less than the force on the device due to gravity (its weight), it is assumed that any risk imposed by the application of the magnetically induced force is no greater than any risk imposed by normal daily activity in the Earth’s gravitational field. This statement does not constitute an acceptance criterion; it is provided as a conservative reference point. It is possible that a greater magnetically induced displacement force can be acceptable and would not harm a patient or other individual in a specific case. Note 2: For instance, in the case of an implanted device that is or could be subjected to a magnetic displacement force greater than the force due to gravity, the location of the implant, surrounding tissue properties, and means of fixation within the body may be considered. For a non-implanted device with a magnetically induced force greater than the gravitational force, consideration should be given to mitigate the projectile risk which may include fixing or tethering the device or excluding it from the MR environment so that it does not become a projectile. 5.3 The maximum static magnetic field strength and spatial field gradient vary for different MR systems. Appendix X3 provides guidance for calculating the allowable static magnetic field strength and spatial field gradient. 5.4 This test method alone is not sufficient for determining if a device is safe in the MR environment.
分类信息
关联关系
研制信息
归口单位: F04.15
相似标准/计划/法规
现行
ASTM F2213-17
Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment
磁共振环境下医疗器械磁感应扭矩测量的标准测试方法
2017-09-01
现行
ASTM F2182-19e2
Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging
磁共振成像期间被动植入物上或其附近射频感应加热测量的标准试验方法
2019-09-15
现行
ASTM B499-09(2021)e1
Standard Test Method for Measurement of Coating Thicknesses by the Magnetic Method: Nonmagnetic Coatings on Magnetic Basis Metals
通过磁性方法测量涂层厚度的标准测试方法:磁性基础金属上的非磁性涂层
2021-04-01
现行
ASTM B530-09(2021)
Standard Test Method for Measurement of Coating Thicknesses by the Magnetic Method: Electrodeposited Nickel Coatings on Magnetic and Nonmagnetic Substrates
通过磁性方法测量涂层厚度的标准测试方法:磁性和非磁性基底上的电沉积镍涂层
2021-04-01
现行
ASTM D8303-20
Standard Test Method for Determining Thermal Cracking Properties of Asphalt Mixtures Through Measurement of Thermally Induced Stress and Strain
通过测量热诱导应力和应变测定沥青混合料的热裂性能的标准试验方法
2020-07-01
现行
ASTM F2267-24
Standard Test Method for Measuring Load-Induced Subsidence of Intervertebral Body Fusion Device Under Static Axial Compression
静态轴向压缩下测量椎间融合器负载引起的沉降的标准试验方法
2024-04-15
现行
ASTM F3555-22
Standard Test Method for Measuring Impact Attenuation Characteristics of Helmets Under Induced Rotational Loading Using an Inclined Anvil
用倾斜砧测量头盔在感应旋转载荷下冲击衰减特性的标准试验方法
2022-06-15
现行
ASTM E376-19
Standard Practice for Measuring Coating Thickness by Magnetic-Field or Eddy Current (Electromagnetic) Testing Methods
用磁场或涡流(电磁)试验方法测量涂层厚度的标准实施规程
2019-05-01
现行
GOST R 57387-2017
Имплантаты для хирургии. Стандартный метод испытания для измерения нагрузок, вызывающих проседание межпозвонковых устройств под статической осевой компрессионной нагрузкой
手术植入物 用于测量静态轴向压缩下椎间体融合装置的负荷诱导沉降的标准试验方法
现行
YY/T 0960-2014
脊柱植入物 椎间融合器静态轴向压缩沉陷试验方法
Spinal implants—Standard test method for measuring load induced subsidence of intervertebral body fusion device under static axial compression
2014-06-17
现行
ASTM D7827-19
Standard Test Method for Measuring n-Heptane Induced Phase Separation of Asphaltene from Heavy Fuel Oils as Separability Number by an Optical Device
标准测试方法测量正庚烷从重油燃料中沥青质相分离作为光学装置的分离数量
2019-12-01
现行
ASTM D7061-23
Standard Test Method for Measuring n-Heptane Induced Phase Separation of Asphaltene-Containing Heavy Fuel Oils as Separability Number by an Optical Scanning Device
用光学扫描装置测量含沥青质重质燃料油的正庚烷诱导相分离作为可分离性数的标准试验方法
2023-12-01
现行
NB/SH/T 0902-2015
含沥青质重质燃料油正庚烷诱导相可分离性值的测定 光学扫描法
Standard test method for measuring n-heptane induced phase separation of asphaltene-containing heavy fuel oil as separability number by an optical scanning device
2015-10-27
现行
ASTM D5568-22a
Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Waveguide
用波导测量微波频率下固体材料的相对复介电常数和相对磁导率的标准试验方法
2022-09-01
现行
ASTM D7449/D7449M-22a
Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Coaxial Air Line
用同轴空气管测量微波频率下固体材料的相对复介电常数和相对磁导率的标准试验方法
2022-09-01