1.1
This practice describes a procedure to quantify the site precision of a process analyzer via repetitive measurement of a single process sample over an extended time period. The procedure may be applied to multiple process samples to obtain site precision estimates at different property levels
1.1.1
The site precision is required for use of the statistical methodology of
D6708
in establishing the correlation between analyzer results and primary test method results using Practice
D7235
.
1.1.2
The site precision is also required when employing the statistical methodology of
D6708
to validate a process analyzer via Practices
D3764
or
D6122
.
1.2
This practice is not applicable to in-line analyzers where the same quality control sample cannot be repetitively introduced.
1.3
This practice is meant to be applied to analyzers that measure physical properties or compositions.
1.4
This practice can be applied to any process analyzer system where the feed stream can be captured and stored in sufficient quantity with no stratification or stability concerns.
1.4.1
The captured stream sample introduction must be able to meet the process analyzer sample conditioning requirements, feed temperature and inlet pressure.
1.4.2
This practice is designed for use with samples that are single liquid phase, petroleum products whose vapor pressure, at sampling and sample storage conditions, is less than or equal to 110 kPa (16.0 psi) absolute and whose
D86
final boiling point is less than or equal to 400 °C (752 °F).
Note 1:
The general procedures described in this practice may be applicable to materials outside this range, including multiphase materials, but such application may involve special sampling and safety considerations which are outside the scope of this practice.
1.5
The values for operating conditions are stated in SI units and are to be regarded as the standard. The values given in parentheses are the historical inch-pound units for information only.
1.6
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
The analyzer site precision is an estimate of the variability that can be expected in a UAR or a PPTMR produced by an analyzer when applied to the analysis of the same material over an extended time period.
4.2
For applications where the process analyzer system results are required to agree with results produced from an independent PTM, a mathematical function is derived that relates the UARs to the PPTMRs. The application of this mathematical function to an analyzer result produces a predicted PPTMR. For analyzers where the mathematical function, that is, a correlation, is developed by
D7235
, the analyzer site precision of the UARs is a required input to the computation.
4.3
After the correlation relationship between the analyzer results and primary test method results has been established, a probationary validation (see
D3764
and
D6122
) is performed using an independent but limited set of materials that were not part of the correlation activity. This probationary validation is intended to demonstrate that the PPTMRs agree with the PTMRs to within user-specified requirements for the analyzer system application. The analyzer site precision is a required input to the probationary validation procedures.
4.3.1
If the process stream analyzer system and the primary test method are based on the same measurement principle(s), or, if the process stream analyzer system uses a direct and well-understood measurement principle that is similar to the measurement principle of the PTM then validation is done via
D3764
. Practice
D3764
also applies if the process stream analyzer system uses a different measurement technology from the PTM, provided that the calibration protocol for the direct output of the analyzer does not require use of the PTM.
4.3.2
If the process stream analyzer system utilizes an indirect or mathematically modeled measurement principle such as chemometric or multivariate analysis techniques where PTMRs are required for the development of the chemometric or multivariate model, then validation of the analyzer is done using Practice
D6122
.
4.3.3
Both the
D3764
and
D6122
validation practices utilize the statistical methodology of Practice
D6708
to conduct the probationary validation. This methodology requires that the site precision for the PTM and the analyzer site precision be available.
4.4
The procedures described herein also serve as the basis for a process analyzer quality control system. A representative sample of the QC material is introduced into the analyzer system in a repeatable fashion. Such sample introduction permits capturing the effect of the analyzer system operating variables on the UAR and PPTMR output signal from the process analyzer. By comparing the observed analyzer responses to the expected response for the QC sample, the fitness for use of the analyzer system can be determined.