Standard Test Method for Measurement of Internal Stress of Metallic Coatings by Split Strip Evaluation (Deposit Stress Analyzer Method)
用分裂条评估法测量金属涂层内部应力的标准试验方法(沉积应力分析仪法)
1.1
This test method for determining the internal tensile or compressive stress in applied coatings is quantitative. It is applicable to metallic layers that are applied by the processes of electroplating or chemical deposition that exhibit internal tensile or compressive stress values from 200 psi to 145 000 psi (1.38 MPa to 1000 MPa).
1.2
Units—
The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other. Conversion between unit systems may result in errors that can cause confusion and should be avoided.
1.3
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Internal stress in applied coatings exhibits potential to cause a breakdown of resistance to corrosion and erosion as a result of the formation of fractures from micro-cracking and macro-cracking within the applied coating. This phenomenon can also cause blistering, peeling, reduction of fatigue strength, and loss. The resulting stress can be tensile in nature, causing the deposit to contract, or compressive in nature, causing the deposit to expand.
5.2
To maintain quality assurance by the bent strip method, it is necessary to monitor production processes for acceptable levels of internal deposit stress in applied coatings. Most low values are false. Initial values tend to be lower than the actual value because of the effect of stock material edge burrs and the resistance of the stock material to bending. Excessive deposit thickness causes lower-than-true value since the coating overpowers and changes the initial modulus of elasticity of the test piece, which becomes more difficult to bend as the coating continues to build upon it. This phenomenon can be corrected considerably by use of a formula that compensates for modulus of elasticity differences between the deposit and the substrate materials, but it does remain a factor. See
Eq 3
.
Note 1:
The highest value of the internal deposit stress as obtained on a stress-versus-plating-thickness curve is usually the truest value of the internal deposit stress.