Standard Test Method for Analytical Procedure Using Transmission Electron Microscopy for the Determination of the Concentration of Carbon Nanotubes and Carbon Nanotube-containing Particles in Ambient Atmospheres
使用透射电子显微镜测定环境大气中碳纳米管和含碳纳米管颗粒浓度的分析程序的标准试验方法
1.1
This test method is an analytical procedure using transmission electron microscopy (TEM) for the determination of the concentration of carbon nanotubes and carbon nanotube-containing particles in ambient atmospheres.
1.1.1
This test method is suitable for determination of carbon nanotubes in both ambient (outdoor) and building atmospheres.
1.2
This test method is defined for polycarbonate capillary pore filters through which a known volume of air has been drawn and for blank filters.
1.3
The direct analytical method cannot be used if the general particulate matter loading of the sample collection filter as analyzed exceeds approximately 25 % coverage of the collection filter by particulate matter.
1.4
Units—
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
This test method is applicable to the measurement of airborne carbon nanotubes in a wide range of ambient air situations and for evaluation of any atmosphere for carbon nanotube structures. Single carbon nanotube structures in ambient atmospheres have diameters below the resolution limit of the light microscope. This test method is based on transmission electron microscopy, which has adequate resolution to allow detection of small thin single carbon nanotubes and is currently a reliable technique capable of unequivocal identification of the majority of nanotube structures. Carbon nanotubes are often found, not as single carbon nanotubes, but as very complex, aggregated structures, which may or may not be aggregated with other particles.
5.2
This test method applies to the analysis of a single filter and describes the precision attributable to measurements for a single filter. Multiple air samples are usually necessary to characterize airborne nanotube structure concentrations across time and space. The number of samples necessary for this purpose is proportional to the variation in measurement across samples, which may be greater than the variation in measurement for a single sample.