首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1036-15(2019)
到馆提醒
收藏跟踪
购买正版
Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells 使用参考电池的非集中器地面光伏模块和阵列的电气性能的标准测试方法
发布日期: 2019-04-01
1.1 这些测试方法涵盖了使用校准参考电池在自然或模拟阳光下光伏组件和阵列的电气性能。 1.1.1 这些测试方法允许使用参考模块而不是参考电池,前提是已使用这些测试方法对校准的参考电池校准了参考模块。 1.2 允许在各种条件下进行测量;在一组选定的报告条件(RC)下报告结果,以便于比较结果。 1.3 这些测试方法仅适用于非集中式地面模块和阵列。 1.4 这些测试方法确定的性能参数仅在测试时适用,并不意味着过去或未来的性能水平。 1.5 这些测试方法适用于不包含串联光伏多结器件的光伏模块和阵列;此类模块和阵列应根据测试方法进行测试 E2236 . 1.6 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。 1.7 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 这些程序旨在为测试和报告光伏组件和阵列的电气性能提供公认的方法。 5.2 测试结果可用于比较在测试单个来源的一组模块或阵列时可能遇到的一组类似项目中的不同模块或阵列。它们还可用于比较不同的设计,例如不同制造商的产品。相同模块或阵列的重复测量可用于研究设备性能的变化。 5.3 可以在一系列测试条件下进行测量。测量数据从试验条件转换为标准RC、标称操作条件或可选用户- 规定的报告条件。推荐RC定义见 表1 . 5.3.1 如果测试条件是设备温度在RC温度的±2°C范围内,且总辐照度在RC辐照度的±5%范围内,则数值转换包括基于测试期间的总辐照度对测量设备电流进行校正 I-V 测量 5.3.2 如果条款 5.3.1 不满足,从四个单独的 I-V 使用双线性插值方法在温度和辐照度条件下测量所需RC。 4. 5.3.2.1 有多种方法可用于支撑温度和辐照度。一种方法是将被测模块冷却到参考温度以下,并重复测量温度 I-V 模块升温时的特性。脉冲光源的辐照度可以通过使用具有不同透射率的中性密度网状滤波器来调节。如果模拟器和测试平面之间的距离可以改变,则可以使用该调整来改变辐照度。在自然阳光下,辐照度将随时间或调整太阳入射角而变化。 5.4 这些测试方法基于两个要求。 5.4.1 首先,参考单元格(或模块,请参阅 1.1.1 和 4.3.4 )其光谱响应被视为接近待测试的模块或阵列。 5.4.2 其次,必须知道代表性电池的光谱响应和辐照度源的光谱分布。 然后,使用光谱失配参数校正参考电池的校准常数,以考虑实际光谱辐照度分布和参考光谱辐照度分布之间的差异,该参数在测试方法中定义 E973 . 5.5 根据参考光谱辐照度分布校准地面参考单元格,例如表格 G173页 . 5.6 按照中所述制造和校准的参考电池 4.3 将指示入射到光谱响应接近参考电池的模块或阵列上的总辐照度。 5.7 根据这些测试方法确定的性能数据,可以根据任何参考光谱辐照度分布在任何测试光源下的测量结果预测模块或阵列的性能。 5.8 的参考条件 5.3.1 如果测量的 I-V 曲线显示“扭结”或多个拐点。
1.1 These test methods cover the electrical performance of photovoltaic modules and arrays under natural or simulated sunlight using a calibrated reference cell. 1.1.1 These test methods allow a reference module to be used instead of a reference cell provided the reference module has been calibrated using these test methods against a calibrated reference cell. 1.2 Measurements under a variety of conditions are allowed; results are reported under a select set of reporting conditions (RC) to facilitate comparison of results. 1.3 These test methods apply only to nonconcentrator terrestrial modules and arrays. 1.4 The performance parameters determined by these test methods apply only at the time of the test, and imply no past or future performance level. 1.5 These test methods apply to photovoltaic modules and arrays that do not contain series-connected photovoltaic multijunction devices; such module and arrays should be tested according to Test Methods E2236 . 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 It is the intent of these procedures to provide recognized methods for testing and reporting the electrical performance of photovoltaic modules and arrays. 5.2 The test results may be used for comparison of different modules or arrays among a group of similar items that might be encountered in testing a group of modules or arrays from a single source. They also may be used to compare diverse designs, such as products from different manufacturers. Repeated measurements of the same module or array may be used for the study of changes in device performance. 5.3 Measurements may be made over a range of test conditions. The measurement data are numerically translated from the test conditions to standard RC, to nominal operating conditions, or to optional user-specified reporting conditions. Recommended RC are defined in Table 1 . 5.3.1 If the test conditions are such that the device temperature is within ±2°C of the RC temperature and the total irradiance is within ±5 % of the RC irradiance, the numerical translation consists of a correction to the measured device current based on the total irradiance during the I-V measurement. 5.3.2 If the provision in 5.3.1 is not met, performance at RC is obtained from four separate I-V measurements at temperature and irradiance conditions that bracket the desired RC using a bilinear interpolation method. 4 5.3.2.1 There are a variety of methods that may be used to bracket the temperature and irradiance. One method involves cooling the module under test below the reference temperature and making repeated measurements of the I-V characteristics as the module warms up. The irradiance of pulsed light sources may be adjusted by using neutral density mesh filters of varying transmittance. If the distance between the simulator and the test plane can be varied then this adjustment can be used to change the irradiance. In natural sunlight, the irradiance will change with the time of day or if the solar incidence angle is adjusted. 5.4 These test methods are based on two requirements. 5.4.1 First, the reference cell (or module, see 1.1.1 and 4.3.4 ) is selected so that its spectral response is considered to be close to the module or array to be tested. 5.4.2 Second, the spectral response of a representative cell and the spectral distribution of the irradiance source must be known. The calibration constant of the reference cell is then corrected to account for the difference between the actual and the reference spectral irradiance distributions using the spectral mismatch parameter, which is defined in Test Method E973 . 5.5 Terrestrial reference cells are calibrated with respect to a reference spectral irradiance distribution, for example, Tables G173 . 5.6 A reference cell made and calibrated as described in 4.3 will indicate the total irradiance incident on a module or array whose spectral response is close to that of the reference cell. 5.7 With the performance data determined in accordance with these test methods, it becomes possible to predict module or array performance from measurements under any test light source in terms of any reference spectral irradiance distribution. 5.8 The reference conditions of 5.3.1 must be met if the measured I-V curve exhibits “kinks” or multiple inflection points.
分类信息
关联关系
研制信息
归口单位: E44.09
相似标准/计划/法规
现行
ASTM E2236-10(2019)
Standard Test Methods for Measurement of Electrical Performance and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and Modules
非中心多结光伏电池和组件电性能和光谱响应测量的标准试验方法
2019-04-01
现行
ASTM D4566-20
Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable
电信电线电缆绝缘和护套电气性能的标准测试方法
2020-10-01
现行
ASTM D5837-15(2023)
Standard Test Method for Furanic Compounds in Electrical Insulating Liquids by High-Performance Liquid Chromatography (HPLC)
用高效液相色谱法测定电绝缘液体中呋喃化合物的标准试验方法
2023-12-01
现行
ASTM E948-16(2020)
Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight
在模拟阳光下使用参考细胞的光伏电池的电性能的标准测试方法
2020-06-01
现行
ASTM E2527-15(2019)
Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight
地面聚光光伏组件和系统在自然阳光下电性能的标准试验方法
2019-04-01
现行
ASTM F2522-12(2022)
Standard Test Method for Determining the Protective Performance of a Shield Attached on Live Line Tools or on Racking Rods for Electric Arc Hazards
测定连接在带电工具或架杆上的屏蔽层电弧危害防护性能的标准试验方法
2022-11-01
现行
ASHRAE 94.2-2010
Standard 94.2-2010 -- Methods of Testing Thermal Storage Devices with Electrical Input and Thermal Output Based on Thermal Performance (ANSI approved)
标准94.2-2010——基于热性能的电输入和热输出蓄热装置的测试方法(ANSI批准)