首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM G173-23
到馆提醒
收藏跟踪
购买正版
Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface 参考太阳光谱辐照度的标准表:37°倾斜面上的直法线和半球面
发布日期: 2023-03-01
1.1 这些表格包含用于地面应用的地面太阳光谱辐照度分布,这些应用需要入射在面向太阳的37°倾斜表面上的半球太阳辐照度(包括直接和散射分量)的标准参考光谱辐照度或直接法向光谱辐照度。这些表中包含的数据反映了具有均匀波长间隔的参考光谱(400 nm以下0.5纳米,400 nm之间1 nm nm和1700nm,1702nm处的中间波长,以及从1705起的5nm间隔 nm至4000nm)。数据表代表了有利于光伏(PV)能源生产以及风化和耐久性暴露应用的合理无云大气条件。 1.2 选择面向太阳的倾斜表面的37°斜率来代表美国48个相邻国家的平均纬度。 1.3 选择空气质量和大气消光参数以提供( 1. )相对于先前标准光谱的历史连续性( 2. )基于现代宽带太阳辐射数据、大气剖面和气溶胶光学深度剖面的改进知识,合理的无云大气条件有利于光伏(PV)能源生产或风化和耐久性暴露。在自然界中,即使在万里无云的天空下,也会遇到非常大范围的大气条件。 根据一天中的时间、地理位置和不断变化的大气条件,可能会观察到与参考光谱的显著偏离。 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ===意义和用途====== 4.1 太阳能的吸收率、反射率和透射率是材料退化研究、太阳能热系统性能、太阳能光伏系统性能、生物研究和太阳能模拟活动中的重要因素。这些光学性质通常是波长的函数,这需要在计算太阳加权性质之前知道太阳通量的光谱分布。为了比较竞争产品的相对性能,或者比较产品在经受风化或其他暴露条件之前和之后的性能,需要参考标准太阳光谱分布。 4.2 这些表格提供了适当的标准光谱辐照度分布,用于确定材料、太阳能热、太阳能光伏和其他系统的相对光学性能。这些表格可用于评估组件和材料,以进行太阳模拟,其中需要直接或半球(即直接光束加漫射天空)光谱太阳辐照度。然而,这些表格并不打算用作紫外线辐射的基准,紫外线辐射用于使用制造光源的材料的室内暴露测试。 4.3 直接和半球倾斜光谱的总积分辐照度为896。 99瓦·米 -2 和1001.92 W·m -2 分别地请注意,在PV应用中,振幅调整仅为-0.2 % 将被要求匹配1000 W·m的标准报告条件辐照度 -2 半球辐照度。 4.4 先前定义的全球半球参考光谱( G159 )面向太阳的37°倾斜面很好地满足了平板光伏研究、开发和工业界的需求。对主要条件和测量光谱的研究表明,这种全球半球参考光谱在实践中可以在各种条件下获得,并且这些条件可以被解释为代表许多大气参数的组合。 早期的全球半球参考光谱可以使用 X1.4 。 4.5 SMARTS 2.9.9版模型在指定条件下生成的参考光谱如所示 图1 生成参考光谱所需的确切输入文件结构如所示 表1 。 4.6 与以前标准光谱的差异( G159 )可以概括如下: 4.6.1 在紫外线中延长的光谱间隔(低至280nm而不是305nm), 4.6.2 更好的分辨率(与120波长相比为2002波长), 4.6.3 恒定间隔(400 nm以下0.5 nm,400 nm之间1 nm nm和1700nm以及5nm以上), 4.6.4 更好地定义大气散射和气体吸收,考虑更多的物种, 4.6.5 更明确的地外光谱, 4.6.6 更真实的光谱地面反射率, 4.6.7 更低的气溶胶光学深度,产生明显更大的直接法向辐照度,以及 4.6.8 直接辐照度的实际定义,包括距离太阳中心2.5°范围内的外太阳辐照度,以匹配当前日光计的测量结果 ( 7 ) .
1.1 These tables contain terrestrial solar spectral irradiance distributions for use in terrestrial applications that require a standard reference spectral irradiance for hemispherical solar irradiance (consisting of both direct and diffuse components) incident on a sun-facing, 37° tilted surface or the direct normal spectral irradiance. The data contained in these tables reflect reference spectra with uniform wavelength interval (0.5 nanometer (nm) below 400 nm, 1 nm between 400 nm and 1700 nm, an intermediate wavelength at 1702 nm, and 5 nm intervals from 1705 nm to 4000 nm). The data tables represent reasonable cloudless atmospheric conditions favorable for photovoltaic (PV) energy production, as well as weathering and durability exposure applications. 1.2 The 37° slope of the sun-facing tilted surface was chosen to represent the average latitude of the 48 contiguous United States. 1.3 The air mass and atmospheric extinction parameters are chosen to provide ( 1 ) historical continuity with respect to previous standard spectra, ( 2 ) reasonable cloudless atmospheric conditions favorable for photovoltaic (PV) energy production or weathering and durability exposure, based upon modern broadband solar radiation data, atmospheric profiles, and improved knowledge of aerosol optical depth profiles. In nature, an extremely large range of atmospheric conditions can be encountered even under cloudless skies. Considerable departure from the reference spectra may be observed depending on time of day, geographical location, and changing atmospheric conditions. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Absorptance, reflectance, and transmittance of solar energy are important factors in material degradation studies, solar thermal system performance, solar photovoltaic system performance, biological studies, and solar simulation activities. These optical properties are normally functions of wavelength, which require the spectral distribution of the solar flux be known before the solar-weighted property can be calculated. To compare the relative performance of competitive products, or to compare the performance of products before and after being subjected to weathering or other exposure conditions, a reference standard solar spectral distribution is desirable. 4.2 These tables provide appropriate standard spectral irradiance distributions for determining the relative optical performance of materials, solar thermal, solar photovoltaic, and other systems. The tables may be used to evaluate components and materials for the purpose of solar simulation where either the direct or the hemispherical (that is, direct beam plus diffuse sky) spectral solar irradiance is desired. However, these tables are not intended to be used as a benchmark for ultraviolet radiation used in indoor exposure testing of materials using manufactured light sources. 4.3 The total integrated irradiances for the direct and hemispherical tilted spectra are 896.99 W·m -2 and 1001.92 W·m -2 , respectively. Note that, in PV applications, an amplitude adjustment of only –0.2 % would be required to match standard reporting condition irradiances of 1000 W·m -2 for hemispherical irradiance. 4.4 Previously defined global hemispherical reference spectrum ( G159 ) for a sun-facing 37°-tilted surface served well to meet the needs of the flat-plate photovoltaic research, development, and industrial community. Investigation of prevailing conditions and measured spectra shows that this global hemispherical reference spectrum can be attained in practice under a variety of conditions, and that these conditions can be interpreted as representative for many combinations of atmospheric parameters. Earlier global hemispherical reference spectrum may be closely, but not exactly, reproduced with improved spectral wavelength range, uniform spectral interval, and spectral resolution equivalent to the spectral interval, using inputs in X1.4 . 4.5 Reference spectra generated by the SMARTS Version 2.9.9 model for the indicated conditions are shown in Fig. 1 . The exact input file structure required to generate the reference spectra is shown in Table 1 . 4.6 Differences from the previous standard spectra ( G159 ) can be summarized as follows: 4.6.1 Extended spectral interval in the ultraviolet (down to 280 nm, rather than 305 nm), 4.6.2 Better resolution (2002 wavelengths, as compared to 120), 4.6.3 Constant intervals (0.5 nm below 400 nm, 1 nm between 400 nm and 1700 nm, and 5 nm above), 4.6.4 Better definition of atmospheric scattering and gaseous absorption, with more species considered, 4.6.5 Better defined extraterrestrial spectrum, 4.6.6 More realistic spectral ground reflectance, 4.6.7 Lower aerosol optical depth, yielding significantly larger direct normal irradiance, and 4.6.8 Practical definition of the direct irradiance, with inclusion of the circumsolar irradiance within 2.5° from sun center to match measurements made with current pyrheliometers ( 7 ) .
分类信息
关联关系
研制信息
归口单位: G03.09
相似标准/计划/法规