Demonstration of Energy Saving and Control Performance of Tiered Trim and Respond Method for VAV System Static Pressure Reset
变风量空调系统静压复位分层微调响应方法节能控制性能论证
ASHRAE标准90.1和加利福尼亚州第24篇建筑能效标准都要求在区域级别重置带有直接数字控制(DDC)的可变风量(VAV)系统上的AHU供气管道压力设定点。虽然已经提出了许多不同的实现方法,但Trim-and-Respond(TR)方法是比较流行的策略之一。尽管TR方法很流行,但由于难以维持稳定控制、参数调整的复杂性或牺牲区域级舒适性,许多方法很难成功实现。较新的TieredTrim and response(TTR)策略提高了控制稳定性,增加了响应时间,但与传统的TR方法相比,该策略具有同等的现场实施便利性和类似的风扇节能效果。TTR方法将最大VAV减振器指令或位置值与三个不同级别的高/低阈值进行比较,并通过改变微调和响应速率来调整静态压力设定点。
目标平均最大VAV减振器值从传统建议的95%或98%开启位置降低到80%至90%开启的较小范围。Ttr方法将设定点稍微推离“理想静压曲线”,但提供了更稳定的系统控制,同时保持对负载变化的快速响应。TTR方法正在五个不同建筑类型和DDC系统的军事建筑工地进行为期一年的演示。初步演示结果显示,与现有的固定静压(FSP)控制设置相比,采用TTR的七台AHU风机的节能率在15%到57%之间。四个RTU表明,风扇节能率在22%到36%之间。其中两个演示使用了两种不同版本的定制配平和响应策略,并用于与TTR方法比较控制性能和区域舒适度。与现有的TR方法相比,TTR方法更稳定,并且具有更好的温度控制。
本文介绍了TTR方法、五个示范点、示范装置和协议、与固定静压控制相比的初步节能,以及与两种不同TR方法相比的控制性能特点。引用:2016年年度会议,密苏里州圣路易斯,会议论文
Both the ASHRAE Standard 90.1 and California Title 24 Building Energy Efficiency Standards require AHU supply duct pressure setpoints onvariable-air-volume (VAV) systems with direct digital controls (DDC) be reset at the zone level. While many different implementation methods havebeen proposed, the Trim and Respond (TR) method is one of the more popular strategies. Although the TR methods are popular many are difficult tosuccessfully implement due to difficulities maintaining stable control, complexity of tuning parameters, or sacrifices in zone level comfort. A newer TieredTrim and Respond (TTR) strategy has improved control stability and increased response time, yet has an equivalent ease of field implementation andsimilar fan energy savings compared to traditional TR methods. The TTR method compares the maximum VAV damper command or position value tothree different tiers of high/low thresholds, and responds by varying the trim and respond rates to adjust the static pressure set points. The targeted averagemaximum VAV damper value is lowered from the traditionally recommended 95% or 98% open position to a lesser range of 80% to 90% open. TheTTR method pushes the setpoints slightly off the "ideal static pressure curve", but provides a more stable system control while maintaining a quickresponse to load changes. The TTR method is being implemented in a year-long demonstration at five military building sites with varying building typesand DDC systems. Preliminary demonstration results show seven AHUs fan energy savings vary from 15% to 57% with TTR compared to the existingfixed static pressure (FSP) control setup. Four of the RTUs indicate the fan energy savings vary from 22% to 36%. Two of the demonstration AHUsimplemented two different versions of customized Trim and Respond strategies and are used to compare control performance and zone comfort with theTTR method. The TTR method is more stable and has better temperature control compared to existing TR methods. This paper describes the TTRmethodology, the five demonstration sites and demonstration setup and protocol, the preliminary energy savings compared to fixed static pressure control,and control performance characteristics compared to two different TR methods.