1.1
本试验方法包括测定火花点火式发动机燃料及其混合物中的单个碳氢化合物组分,该混合物含有沸点范围高达225的含氧混合物(MTBE、ETBE、乙醇等) °C。还可以分析石油精炼操作中通常遇到的其他轻质液体烃混合物,例如混合原料(石脑油、重整产物、烷基化物等);然而,统计数据仅通过混合火花点火发动机燃料获得。
1.2
基于合作研究结果,确定了各个组分的浓度和精度,范围为0。
01 % 至约30 % 试验方法可适用于单个组分的较高和较低浓度;然而,如果测试方法用于浓度超出规定范围的成分,则用户必须验证其准确性。
1.3
该测试方法还测定了甲醇、乙醇、甲醇、甲醇和甲醇,
吨
-甲基丁醇
吨
-乙基丁基醚(MTBE)
吨
-丁基醚(ETBE),和
吨
-火花点火发动机燃料中戊基甲基醚(TAME)的浓度范围为1 % 至30 % 然而,合作研究数据提供的统计数据不足,无法对这些化合物进行精确说明。
1.4
虽然确定了存在的大多数单独的碳氢化合物,但也遇到了一些化合物的共洗脱。如果使用该测试方法来估计整体烃基类型组成(PONA),则应警告此类数据的用户,由于共洗脱和缺少所有存在组分的识别,将遇到一些错误。含有大量上述环烷(例如,未经处理的萘)成分的样品
n
-辛烷值可能反映PONA类型分组中的显著误差。基于实验室间合作研究中的汽油样品,本试验方法适用于含有小于25 % 以烯烃的质量计。
然而,一些干扰C以上烯烃的共洗脱
7.
特别是如果混合组分或其更高沸点馏分(例如来自流体催化裂化(FCC)的馏分)被分析,并且总烯烃含量可能不准确。
附件A1
本试验方法的试验结果与所选组分(包括烯烃)的其他试验方法以及几个实验室间合作研究样品的几种组分类型进行了比较。尽管测定了苯、甲苯和几种含氧化合物,但当对这些成分的分析结果有疑问时,可使用参考章节中列出的特定测试方法进行验证性分析。
1.4.1
如有必要,可通过试验方法获得或确认样品中的总烯烃,或两者兼而有之
第1319页
(体积百分比)或其他测试方法,例如基于多维PONA类型仪器的测试方法。
1.5
如果存在或怀疑存在水,如果需要,可使用试验方法测定其浓度
1744年
或同等产品。也可以存在含有氧、硫、氮等的其他化合物,并且可以与烃共洗脱。如果需要测定这些特定化合物,建议使用这些特定材料的试验方法,如试验方法
第4815页
和
D5599型
含氧化合物和试验方法
第5623页
硫化合物或等效物。
1.6
以国际单位制表示的值应视为标准值。本标准不包括其他测量单位。
1.7
本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。
1.8
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《国际标准、指南和建议制定原则决定》中确立的国际公认标准化原则制定的。
=====意义和用途======
5.1
了解汽油燃料和混合燃料的单个组分组成(物种)对炼油厂质量控制和产品规范非常有用。通过使用该测试方法,可以确定许多单独碳氢化合物的过程控制和产品规范符合性。
5.2
该测试方法是从早期开发和改进中采用的。
4.
,
5.
,
6.
,
7.
本试验方法中包括的色谱操作条件和色谱柱调整过程,旨在提供并加强分离和随后测定许多以前单一色谱法未获得的单独组分-
柱分析。选择柱温度程序曲线以提供可能的共洗脱组分的最大分辨率,特别是当这些组分是两种不同的化合物类型(例如,石蜡和环烷)时。
5.3
虽然测定了石油馏分中存在的大多数单独的烃,但也遇到了一些化合物的共洗脱。如果使用该测试方法来确定整体烃基类型组成(PONA),则应警告此类数据的用户,由于共洗脱和缺少所有存在组分的识别,将遇到一些错误。
含有大量高于辛烷值的烯烃或环烷烃或两者的样品可能反映PONA类型分组中的显著误差。
5.4
如果存在或怀疑存在水,则使用试验方法测定其浓度
1744年
也可以存在含有氧、硫、氮等的其他化合物,并且可以与烃共洗脱。当已知共洗脱存在时,这些记录在测试方法数据表中。如果需要测定这些特定化合物,建议使用这些特定材料的试验方法,如试验方法
第4815页
和
D5599型
含氧化合物的试验方法
D5580型
芳烃和试验方法
第5623页
硫化合物。
1.1
This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.
1.2
Based on the cooperative study results, individual component concentrations and precision are determined in the range from 0.01 % to approximately 30 % by mass. The test method may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the test method is used for components with concentrations outside the specified ranges.
1.3
This test method also determines methanol, ethanol,
t
-butanol, methyl
t
-butyl ether (MTBE), ethyl
t
-butyl ether (ETBE), and
t
-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range from 1 % to 30 % by mass. However, the cooperative study data provided insufficient statistical data for obtaining a precision statement for these compounds.
1.4
Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above
n
-octane may reflect significant errors in PONA-type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this test method is applicable to samples containing less than 25 % by mass of olefins. However, some interfering co-elution with the olefins above C
7
is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate.
Annex A1
of this test method compares results of the test method with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toulene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using the specific test methods listed in the reference section.
1.4.1
Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method
D1319
(percent by volume) or other test methods, such as those based on multidimentional PONA-type of instruments.
1.5
If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method
D1744
or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods
D4815
and
D5599
for oxygenates, and Test Method
D5623
for sulfur compounds, or equivalent.
1.6
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.7
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.
5.2
This test method is adopted from earlier development and enhancement.
4
,
5
,
6
,
7
The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).
5.3
Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.
5.4
If water is or is suspected of being present, its concentration is determined by the use of Test Method
D1744
. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method
D4815
and
D5599
for oxygenates, Test Method
D5580
for aromatics, and Test Method
D5623
for sulfur compounds.