1.1
本规程涉及建造、校准和使用全尺寸耗氧量热仪的方法,以帮助最小化实验室之间的测试结果差异。
1.2
本文所述方法用于许多ASTM试验方法、各种非标准试验方法和研究目的。这种做法将有助于协调通用需求,这些需求并非特定于测试项。
1.3
从使用该技术的测试方法中获得的主要火灾测试响应特性是与测试样本的热释放有关的特性,作为时间的函数。其他耐火试验-
还确定了响应特性。
1.4
本规程旨在适用于不同类型试验的进行,包括一些旨在评估释放少量热量或烟雾的产品的比较防火性能的试验,以及一些旨在评估是否会发生闪络的试验。
1.5
本规程未提供可用作监管工具的合格/不合格标准,也未描述任何材料或产品的测试方法。
1.6
有关在裁判裁决中使用国际单位制的信息,请参阅
IEEE/ASTM SI-10
. 括号中给出的单位仅供参考。
1.7
本标准用于测量和描述材料、产品或组件在受控条件下对热量和火焰的响应,但其本身并不包括在实际火灾条件下对材料、产品或组件进行火灾危险或火灾风险评估所需的所有因素。
注1:
这是ASTM标准防火测试响应标准手册格式和样式第F2.2.2.1节中描述的标准警告。事实上,这种做法并没有提供定量的衡量标准。
1.8
产品和材料的防火测试具有固有的危险性,在进行这些测试时,应对人员和财产采取适当的保护措施。
防火测试涉及危险材料、操作和设备。另请参见第节
7.
.
1.9
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.10
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
用于此处所述测量的耗氧量原理基于以下观察结果:通常,净燃烧热与燃烧所需的氧气量直接相关
(
1.
)
.
7.
每消耗1公斤氧气,大约释放13.1兆焦耳的热量。试验中的试样在环境空气条件下燃烧,同时承受规定的外部热源。
4.1.1
当可燃燃料是释放氧气的氧化剂或爆炸剂时,该技术不适合单独使用。在这种情况下,需要进一步分析(参见
附录X2
).
4.2
热释放是通过在全尺寸环境中测量氧消耗来确定的,氧消耗是由燃烧产物流中的氧浓度和流速确定的。
4.3
主要测量值为氧气浓度和废气流量。其他测量包括试样可燃性、产生的烟雾遮蔽、试样质量损失率、有效燃烧热和试样燃烧产物的产率。
4.4
耗氧技术用于不同类型的测试方法。中间刻度(试验方法
E1623
,UL 1975)和全尺寸(试验方法
D5424
,试验方法
D5537
,试验方法
E1537
,试验方法
E1590
,试验方法
E1822
,ISO 9705,NFPA 265,NFPA 266,NFPA 267,NFPA 286,UL 1685)测试方法,以及遵循指南的非标准室内规模实验
E603
,使用该技术涉及一个大型仪表排气罩,在该排气罩中测量氧气浓度,可以单独站立或放置在门口外。将大试样放置在发动机罩下或室内。本规程旨在解决与设备相关的问题,这些设备需要大型仪表罩,而不是带有小试样的独立试验装置。
4.4.1
使用该技术的小规模测试方法,例如测试方法
D6113
,
E1354
,
E1474
和
E1740
,以及国际上的ISO 5660,都是基于一个独立的仪器,其中一个小样本在设备内进行测试。试验方法是使用耗氧量热法对较大的试样(比上述参考试验方法)进行小规模试验,旨在降低热释放水平
E2965年
.
4.4.2
另一种小规模热释放试验方法,试验方法
E906
,不使用耗氧技术。
4.4.3
附件A1
包含热释放测量所需的注意事项和
附件A2
包含相应的测量方程以及烟雾和气体释放测量方程。
这些方程适用于试验方法
D5424
,
D5537
,
E1537
,
E1590
,
E1623
和
E1822
. 另请参见第节
14
.
4.5
在本实践中,参考了测试设备,为测试设施提供了有益的指导。允许替换同等或更好的测试测量装置。
1.1
This practice deals with methods to construct, calibrate, and use full scale oxygen consumption calorimeters to help minimize testing result discrepancies between laboratories.
1.2
The methodology described herein is used in a number of ASTM test methods, in a variety of unstandardized test methods, and for research purposes. This practice will facilitate coordination of generic requirements, which are not specific to the item under test.
1.3
The principal fire-test-response characteristics obtained from the test methods using this technique are those associated with heat release from the specimens tested, as a function of time. Other fire-test-response characteristics also are determined.
1.4
This practice is intended to apply to the conduction of different types of tests, including both some in which the objective is to assess the comparative fire performance of products releasing low amounts of heat or smoke and some in which the objective is to assess whether flashover will occur.
1.5
This practice does not provide pass/fail criteria that can be used as a regulatory tool, nor does it describe a test method for any material or product.
1.6
For use of the SI system of units in referee decisions, see
IEEE/ASTM SI-10
. The units given in parentheses are provided for information only.
1.7
This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.
Note 1:
This is the standard caveat described in section F2.2.2.1 of the Form and Style for ASTM Standards manual for fire-test-response standards. In actual fact, this practice does not provide quantitative measures.
1.8
Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. Fire testing involves hazardous materials, operations, and equipment. See also Section
7
.
1.9
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.10
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
The oxygen consumption principle, used for the measurements described here, is based on the observation that, generally, the net heat of combustion is directly related to the amount of oxygen required for combustion
(
1
)
.
7
Approximately 13.1 MJ of heat are released per 1-kg of oxygen consumed. Test specimens in the test are burned in ambient air conditions, while being subjected to a prescribed external heating source.
4.1.1
This technique is not appropriate for use on its own when the combustible fuel is an oxidizer or an explosive agent, which release oxygen. Further analysis is required in such cases (see
Appendix X2
).
4.2
The heat release is determined by the measurement of the oxygen consumption, as determined by the oxygen concentration and the flow rate in the combustion product stream, in a full scale environment.
4.3
The primary measurements are oxygen concentration and exhaust gas flow rate. Additional measurements include the specimen ignitability, the smoke obscuration generated, the specimen mass loss rate, the effective heat of combustion and the yields of combustion products from the test specimen.
4.4
The oxygen consumption technique is used in different types of test methods. Intermediate scale (Test Method
E1623
, UL 1975) and full scale (Test Method
D5424
, Test Method
D5537
, Test Method
E1537
, Test Method
E1590
, Test Method
E1822
, ISO 9705, NFPA 265, NFPA 266, NFPA 267, NFPA 286, UL 1685) test methods, as well as unstandardized room scale experiments following Guide
E603
, using this technique involve a large instrumented exhaust hood, where oxygen concentration is measured, either standing alone or positioned outside a doorway. A large test specimen is placed either under the hood or inside the room. This practice is intended to address issues associated with equipment requiring a large instrumented hood and not stand-alone test apparatuses with small test specimens.
4.4.1
Small scale test methods using this technique, such as Test Methods
D6113
,
E1354
,
E1474
and
E1740
, as well as ISO 5660 internationally, are based on a stand-alone apparatus, wherein a small specimen is tested within the equipment. A small-scale test using oxygen consumption calorimetry with a larger test specimen (than the above referenced test methods) and intended for low levels of heat release is Test Method
E2965
.
4.4.2
Another small scale heat release test method, Test Method
E906
, does not use the oxygen consumption technique.
4.4.3
Annex A1
contains the considerations needed for heat release measurements and
Annex A2
contains the corresponding measurement equations as well as the equations for smoke and gas release measurements. These equations apply to Test Methods
D5424
,
D5537
,
E1537
,
E1590
,
E1623
, and
E1822
. See also Section
14
.
4.5
Throughout this practice, test equipment is referenced to provide helpful guidance to test facilities. Substitution of equivalent, or better, test measuring devices is permissible.