1.1
This test method covers a rapid portable means for field and laboratory use to rate the ability of aviation turbine fuels to release entrained or emulsified water when passed through fiberglass coalescing material.
1.2
The procedure section of this test method contains two different modes of test equipment operation. The primary difference between the modes of operation is the rate of fuel flow through the fiberglass coalescing material. Test method selection is dependent on the particular fuel to be tested.
1.3
The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
This test method provides a measure of the presence of surfactants in aviation turbine fuels. Like previous obsolete Test Methods
D2550
and
D3602
, and current Test Methods
D7224
and
D8073
, this test method can detect carryover traces of refinery treating residues in fuel as produced. They can also detect surface active substances added to or picked up by the fuel during handling from point of production to point of use. Certain additives can also have an adverse effect on the rating. Some of these substances affect the ability of filter separators to separate free water from the fuel.
5.2
The Micro-Separometer has a measurement range from 50 to 100. Values obtained outside of those limits are undefined and invalid. In the event a value greater than 100 is obtained, there is a good probability that light transmittance was reduced by material contained in the fuel used to set the 100 reference level. The material was subsequently removed during the coalescing portion of the test, thus, the processed fuel had a higher light transmittance than the fuel sample used to obtain the 100 reference level resulting in the final rating measuring in excess of 100.
5.3
Test Mode A function of the separometer will give approximately the same rating for Jet A, Jet A-1, MIL JP-5, MIL JP-7, and MIL JP-8 fuels as Test Methods
D2550
and
D3602
. Using Mode A water separation characteristic ratings of Jet B and MIL JP-4 fuels will not necessarily be equivalent to Test Method
D2550
but will give approximately the same rating as Test Method
D3602
. All Micro-Separometers have Test Mode A capability.
5.4
The Test Mode B option is used to determine water separation ratings for MIL JP-4 fuels containing fuel system corrosion and icing inhibitors. These ratings are approximately the same as those obtained using Test Method
D2550
.
5.5
Selection of Mode A or Mode B depends on the specific fuel and specification requirement.
Table 1
identifies the recommended test method for various fuels.
5.6
The basic difference between Modes A and B is the flow rate at which the water/fuel emulsion is forced through the standard fiberglass coalescer cell. The lapsed time required to force the emulsion through the coalescer cell in Mode A is 45 s ± 2 s, whereas, Mode B requires 25 s ± 1 s.