首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E82/E82M-14(2019)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Determining the Orientation of a Metal Crystal 测定金属晶体取向的标准试验方法
发布日期: 2019-11-01
1.1 本试验方法涵盖了确定金属晶体方向的背反射劳厄程序。用于确定晶体取向的背反射劳厄方法可适用于大晶粒和微晶粒,具体取决于多晶聚集体内的光束尺寸,以及任何尺寸的单晶。本试验方法参考立方晶体和其他结构,如:六角形、四方或正交晶体。 1.2 大多数天然晶体的外表面发育良好,通常可以通过检查确定此类晶体的方向。 表面发育不良或完全没有表面的晶体(例如,实验室制备的金属晶体)的取向应通过更精细的方法确定。其中最方便和准确的是使用X射线衍射。当单位晶胞的晶体学轴在空间中的位置已参考晶体试样的表面几何形状确定时,“金属晶体的方向”已知。单元位置和表面几何形状之间的这种关系最方便地用赤平投影或gnomonic投影表示。 1.3 单位- 以国际单位制或英寸-磅单位表示的数值应单独视为标准值。每个系统中规定的值可能不是精确的等效值;因此,每个系统应相互独立使用。将两个系统的值合并可能会导致不符合标准。 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 金属和其他材料的物理性质通常是各向异性的(例如:杨氏模量通常会在不同的结晶方向上变化)。因此,通常需要或有必要确定单晶的方向,以确定任何相关物理性质与材料中不同方向的关系。 4.2 该试验方法可在商业上用作生产条件下的质量控制试验,其中要求在规定的限制范围内实现所需的方向。 4.3 通过使用可调固定支架(稍后可安装在锯、车床或其他机器上),可以将单晶材料移动到首选方向,然后进行切片、研磨或其他处理。 4.4 如果多晶材料中的晶粒足够大,则该试验方法也可用于确定它们的方向,并且可以记录或绘制方向差异,或者两者兼有。
1.1 This test method covers the back-reflection Laue procedure for determining the orientation of a metal crystal. The back-reflection Laue method for determining crystal orientation may be applied to macrograins and micrograins depending on the beam size within polycrystalline aggregates, as well as to single crystals of any size. This test method is described with reference to cubic crystals and other structures such as: hexagonal, tetragonal, or orthorhombic crystals. 1.2 Most natural crystals have well developed external faces, and the orientation of such crystals can usually be determined from inspection. The orientation of a crystal having poorly developed faces or no faces at all (for example, a metal crystal prepared in the laboratory) shall be determined by more elaborate methods. The most convenient and accurate of these involves the use of X-ray diffraction. The “orientation of a metal crystal” is known when the positions in space of the crystallographic axes of the unit cell have been located with reference to the surface geometry of the crystal specimen. This relation between unit cell position and surface geometry is most conveniently expressed by stereographic or gnomonic projection. 1.3 Units— The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 The physical properties of metals and other materials are often anisotropic (for example: Young's modulus will typically vary in different crystallographic directions). As such, it is often desirable or necessary to determine the orientation of a single crystal to ascertain the relation of any pertinent physical properties with respect to different directions in the material. 4.2 This test method can be used commercially as a quality control test in production situations in which a desired orientation, within prescribed limits, is required. 4.3 With the use of an adjustable, fixed holder that can later be mounted on a saw, lathe, or other machine, a single crystal material can be moved to a preferred orientation and subsequently sectioned, ground, or processed otherwise. 4.4 If the grains in a polycrystalline material are large enough, this test method can also be used to determine their orientations and differences in orientation can be documented or mapped or both.
分类信息
关联关系
研制信息
归口单位: E04.11
相似标准/计划/法规
现行
ASTM E975-22
Standard Test Method for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation
近随机结晶取向钢中残余奥氏体的X射线测定的标准试验方法
2022-11-01
现行
ASTM E2448-22
Standard Test Method for Determining the Superplastic Properties of Metallic Sheet Materials
测定金属板材超塑性的标准试验方法
2022-06-15
现行
ASTM D5517-14(2021)
Standard Test Method for Determining Extractability of Metals from Art Materials
测定艺术材料中金属可萃取性的标准试验方法
2021-11-01
现行
ASTM C1517-24
Standard Test Method for Determination of Metallic Impurities in Uranium Metal or Compounds by DC-Arc Emission Spectroscopy
通过直流电弧发射光谱测定铀金属或化合物中的金属杂质的标准测试方法
2024-10-01
现行
ASTM E1941-10(2016)
Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
通过燃烧分析测定耐火和反应性金属及其合金中的碳的标准试验方法
2016-12-01
现行
ASTM G124-18
Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres
富氧大气中金属材料燃烧性能测定的标准试验方法
2018-11-01
现行
ASTM F1459-06(2017)
Standard Test Method for Determination of the Susceptibility of Metallic Materials to Hydrogen Gas Embrittlement (HGE)
测定金属材料对氢气脆性(HGE)敏感性的标准试验方法
2017-12-01
现行
ASTM D4075-06(2021)
Standard Test Methods for Rubber Compounding Materials—Flame Atomic Absorption Analysis—Determination of Metals
橡胶复合材料的标准试验方法金属的火焰原子吸收分析测定
2021-11-01
现行
KS M 6584(2023 Confirm)
고무 중의 금속분(납, 아연, 구리, 망가니즈) 정량방법-불꽃원자흡수분광법
橡胶的标准试验方法火焰原子吸收(AAS)分析法测定金属含量
2008-12-10
现行
KS M 6584(2018 Confirm)
고무 중의 금속분(납, 아연, 구리, 망가니즈) 정량방법-불꽃원자흡수분광법
橡胶的标准试验方法火焰原子吸收(AAS)分析法测定金属含量
2008-12-10
现行
ASTM D4004-06(2021)
Standard Test Methods for Rubber—Determination of Metal Content by Flame Atomic Absorption (AAS) Analysis
用火焰原子吸收(AAS)分析法测定橡胶中金属含量的标准试验方法
2021-11-01
现行
ASME B31J-2017
Standard Test Method for Determining Stress Intensification Factors (i-Factors) for Metallic Piping Components
测定金属管道部件应力增强系数(i系数)的标准试验方法
2017-06-16
现行
ASTM E1681-23e1
Standard Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials
金属材料环境辅助开裂阈值应力强度因子测定的标准试验方法
2023-05-01
现行
ASTM D7639-22
Standard Test Method for Determination of Zirconium Treatment Weight or Thickness on Metal Substrates by X-Ray Fluorescence
用X射线荧光法测定金属基底上锆处理重量或厚度的标准试验方法
2022-12-01
现行
ASTM D7303-23
Standard Test Method for Determination of Metals in Lubricating Greases by Inductively Coupled Plasma Atomic Emission Spectrometry
用电感耦合等离子体原子发射光谱法测定润滑脂中金属的标准试验方法
2023-07-01
现行
NB/SH/T 0864-2013
润滑脂中金属元素的测定 电感耦合等离子体发射光谱法
Standard test method for determination of metals in lubricating greases by inductively coupled plasma atomic emission spectrometry
2013-06-08
现行
ASTM E1447-22
Standard Test Method for Determination of Hydrogen in Reactive Metals and Reactive Metal Alloys by Inert Gas Fusion with Detection by Thermal Conductivity or Infrared Spectrometry
用热导率或红外光谱法检测的惰性气体熔融法测定活性金属和活性金属合金中氢的标准试验方法
2022-06-01
现行
ASTM D8130-17(2024)
Standard Test Method for Determination of Metals in Purified Terephthalic Acid (PTA) by Inductively Coupled Plasma Atomic Emission Spectrometric Method
用电感耦合等离子体原子发射光谱法测定精对苯二甲酸(PTA)中金属的标准试验方法
2024-07-01
现行
ASTM D6906-12a(2021)
Standard Test Method for Determination of Titanium Treatment Weight on Metal Substrates by Wavelength Dispersive X-Ray Fluorescence
用波长色散X射线荧光法测定金属基材上钛处理重量的标准试验方法
2021-11-01
现行
ASTM D6376-10(2017)e1
Standard Test Method for Determination of Trace Metals in Petroleum Coke by Wavelength Dispersive X-ray Fluorescence Spectroscopy
通过波长色散X射线荧光光谱法测定石油焦中微量金属的标准测试方法
2017-01-01