1.1
本实践提出了一种使用光学图像剖面仪(OIP)系统描绘由石油烃、煤焦油和类似废料组成的非水相液体(NAPL)在地下存在的方法。OIP探头采用直接推进(DP)方法深入废料、土壤和松散地层。OIP系统提供的数据大约每15个 毫米(0.05 ft),以支持高分辨率现场表征。
1.2
OIP测井仅限于废物、土壤和可使用直接推进设备穿透的松散地层。穿透材料的能力取决于运载车辆的重量、土壤/材料的密度和土壤/材料稠度。
在某些地面条件下,穿透可能受到限制,或者可能对传感器或工具造成损坏。DP工具并非设计用于穿透固结岩石(导轨
D6001/D6001M
和
D6282/D6282M
,实践
D7352
和
D8037/D8037米
).
1.3
单位--
以国际单位制表示的数值应视为标准,但括号内的信息以英寸-磅单位表示,因为它们是许多用户常用的单位。每个系统中规定的值可能不是完全相等的;因此,每个系统应独立使用。将两个系统的值结合起来可能会导致不符合标准。
1.4
所有观测值和计算值应符合实践中制定的有效数字和四舍五入指南
D6026
,除非被本标准取代。
1.5
本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.6
本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。
====意义和用途======
5.1
非水相液体和各种碳氢化合物的废物对土壤和地下水的地下污染在工业化世界中普遍存在。
2004年,美国环保局估计约有680人 000个活性地下储罐(UST)。他们还估计,大约96 % 其中包括石油产品和443多个 000次释放已被确认
(
3.
)
这表明有许多设施和地点的LNAPL可能存在于地下土壤中。通常,地下碳氢化合物污染可能包括常见的石油或燃料(柴油、汽油、喷气燃料等),或原油和相关废物。然而,木材处理设施中使用的杂酚油
(
4.
)
或历史上制造的天然气厂产生的焦油
(
5.
)
以及其他类似的废料也令人关注。这些产品和相关废物含有芳香族和/或多环芳烃,在特定波长的入射光下会发出荧光
(
6.
)
.
5.2
激光诱导荧光(LIF)(实践
D6187
)最初开发于20世纪90年代,用于检测地下土壤中的许多类型的碳氢化合物NAPL
(
7.
)
该系统使用安装在地面上的激光器和光纤电缆将激光传输到井下并从蓝宝石窗口射出,以照亮地层。产生的荧光通过第二根光纤电缆传输回孔,进入分光镜系统进行分析。这些系统已成功部署,使用圆锥贯入仪卡车或直接推动冲击式探测机在许多地点定位地下碳氢化合物NAPL和相关废物
(
8.
)
.使用激光进行碳氢化合物检测的类似系统仍然可用,如UVOST和TarGOST系统
(
9
)
.
5.3
OIP系统不能直接检测由氯化挥发性有机化合物(CVOC)组成的致密非水相液体(DNAPL)。然而,如果CVOC DNAPL含有脱脂操作产生的油脂或油,则OIP系统可能会检测到这些油脂或油。检测CVOC DNAPL的替代方法包括染料LIF系统
(
10
)
和MIP系统(实践
D7352
). MIP系统还可以检测溶解相CVOC和溶解相石油地下水羽流
(
11
)
.
5.4
OIP系统使用探针内的小型紫外LED或小型绿色激光二极管代替大型上孔激光器和相关光纤电缆,通过蓝宝石窗口照射地层以诱导荧光。
此外,安装在探头蓝宝石窗口后面的一个小型CMOS相机被用作发射可见光范围荧光的探测器(
图1
). OIP已成功部署在圆锥贯入仪车辆下或使用直接推动冲击式探测机,以定位许多地点地下的碳氢化合物NAPL和相关废物
(
2.
)
.
5.5
当探针以大约2 cm/s的速度前进时,CMOS相机以大约每秒30帧(FPS)的速度拍摄可见光荧光的图像。CMOS相机收集的图像被发送到仪器和计算机系统。计算机软件分析所收集图像的像素中的颜色。分析像素的特定颜色范围,典型的颜色范围为UV或绿光诱导的碳氢化合物荧光。
计算机软件确定每个图像中被识别为碳氢化合物荧光的面积百分比。
5.6
为了在感兴趣的深度获得更好质量的图像,可以停止探针前进。屏幕上的图标使操作员能够在探头处于紫外线和可见光或绿光和红外光下静止时获取图像,具体取决于所使用的探头。这些“静止”图像为操作员提供了观察NAPL或地层颜色和/或纹理分布所需的更高清晰度和清晰度的图像(
图3
). 静止图像保存在日志文件中获取的深度处。
图3
静止图像示例
当探针不移动时,在与OIP系统相同深度的UV光(A)和可见光(B)下拍摄的静止图像的示例。
该位置的产品为#2燃料油。产品的液滴、气泡和神经节在两张图像中都可见。
5.7
OIP系统提供了一种在碳氢化合物污染地点筛查NAPL的实时方法。图形日志用于显示图像中荧光的平均百分比面积、整体形成EC、HPT注射压力和所选图像的日志(
图2
). 实时数据允许在现场调查中进行适应性规划
(
12-
15
)
OIP系统的结果可用于识别采样或补救措施的位置和特定深度。
5.8
在实验室台架试验中评估了常见燃料的检测范围
(
2.
)
.用10清洁硅砂 % 水分中掺入了多种浓度的普通燃料-
相关污染物(汽油、柴油、原油),并在OIP-UV系统上进行测试。在体积浓度低于100 mg/kg的情况下,可以观察到所测试的原油,在200 mg/kg附近检测到新鲜道路柴油,在约300 mg/kg的条件下检测到新鲜汽油。在该台架测试中,这些产物在清洁砂-水基质中以低体积浓度的自由相液滴形式观察到,而不是以溶解相化合物形式观察到。产品风化、生物降解以及特定地点的土壤和水分条件可能会产生影响,并显著提高最低检测限。
5.9
虽然OIP-UV系统使用265 nm至275 nm的UV源,可以诱导BTEX(苯、甲苯、乙苯和二甲苯)的荧光,但CMOS相机目前无法检测这些分析物产生的UV范围荧光。
5.10
OIP日志数据可以用适当的软件程序在2D和/或3D中建模。这些模型为描述碳氢化合物NAPL污染和相关废物在整个场地的分布提供了有用的可视化工具。土壤图像、EC和HPT结果可用于确定岩性和污染物迁移途径
(
2.
,
11
,
16
)
.
5.11
应用本规程获得的数据可用于引导土壤(指南
D6282/D6282M
)和地下水取样(指南
D6001/D6001M
)或放置长期监测井(实践
D5092/D5092米
指导
D6724/D6724米
实践
D6725/D6725米
).
5.11.1
OIP系统的结果可用于优化现场修复。OIP、EC、HPT和CPT结果可用于确定移除或修复的位置和目标深度。
5.12
OIP系统可用于评估被碳氢化合物和相关废料污染的场地的修复效果。OIP日志可以在补救措施之后运行,以评估碳氢化合物荧光的减少或消除。土壤图像还可用于通过可见光图像的土壤颜色变化或与注入地下的补救液混合的荧光示踪染料的存在来识别受补救液影响的土壤深度。
5.13
OIP系统无法检测溶解相碳氢化合物。膜界面探针(MIP)(实践
D7352
)通常与OIP结合使用或独立地用于记录与碳氢化合物NAPL污染、相关废物或其他挥发性有机化合物相关的溶解相污染物羽流。
1.1
This practice presents a method for delineating the subsurface presence of nonaqueous phase liquids (NAPLs) consisting of petroleum hydrocarbons, coal tars, and similar waste materials using an optical image profiler (OIP) system. The OIP probe is advanced into waste materials, soils, and unconsolidated formations using direct push (DP) methods. The OIP system provides data approximately each 15 mm (0.05 ft) of log depth to support high-resolution site characterization.
1.2
OIP logging is limited to wastes, soils, and unconsolidated formations that can be penetrated with the available direct push equipment. The ability to penetrate materials is based on carrying vehicle weight, density of soil/materials, and consistency of soil/materials. Penetration may be limited or damage to sensors or tooling can occur under certain ground conditions. DP tools are not designed to penetrate consolidated rock (Guides
D6001/D6001M
and
D6282/D6282M
, Practices
D7352
and
D8037/D8037M
).
1.3
Units—
The values stated in SI units are to be regarded as standard, however, inch pound units are indicated for information within parentheses as they are in common use for many users. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4
All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice
D6026
, unless superseded by this standard.
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Subsurface contamination of soil and groundwater by nonaqueous phase liquids and wastes of various hydrocarbons is widespread in the industrialized world. In 2004, the U.S. EPA estimated there were about 680 000 active underground storage tanks (USTs) in the United States. They also estimated that approximately 96 % of these contained petroleum products and more than 443 000 releases had been confirmed
(
3
)
. This indicates that there are many facilities and locations where LNAPLs may be present in subsurface soil. Often, subsurface hydrocarbon contamination may consist of common petroleum oils or fuels (diesel, gasoline, jet fuel, etc.), or crude oil and associated wastes. However, creosote used at wood treating facilities
(
4
)
or coal tars generated at historical manufactured gas plants
(
5
)
and other similar waste materials are also of concern. These products and related wastes contain aromatic and/or PAHs that will fluoresce under certain wavelengths of incident light
(
6
)
.
5.2
Laser induced fluorescence (LIF) (Practice
D6187
) was initially developed in the 1990s for the detection of many types of hydrocarbon NAPLs in subsurface soils
(
7
)
. This system uses a laser mounted above ground with a fiber-optic cable to transmit laser light down-hole and out a sapphire window to illuminate the formation. Resultant fluorescent light is transmitted back up-hole with a second fiber-optic cable to a spectroscope system for analysis. These systems have been successfully deployed using both a cone penetrometer truck or with a direct push percussion probing machine to locate hydrocarbon NAPLs and associated wastes in the subsurface at many sites
(
8
)
. Comparable systems for hydrocarbon detection using lasers are still available such as the UVOST and TarGOST systems
(
9
)
.
5.3
The OIP system cannot directly detect dense nonaqueous phase liquids (DNAPLs) composed of chlorinated volatile organic compounds (CVOCs). However, if the CVOC DNAPL contains greases or oils from degreasing operations, they may be detectable with the OIP system. Alternate methods for detection of CVOC DNAPL include the dye-LIF system
(
10
)
and the MIP system (Practice
D7352
). The MIP system also can detect dissolved phase CVOCs and dissolved phase petroleum groundwater plumes
(
11
)
.
5.4
In place of a large up-hole laser and associated fiber-optic cables, the OIP system uses a small UV LED or a small green laser diode down-hole inside the probe to illuminate the formation through a sapphire window to induce fluorescence. Additionally, a small CMOS camera mounted behind the sapphire window inside the probe is used as the detector for the emitted visible range fluorescent light (
Fig. 1
). The OIP has been successfully deployed under both cone penetrometer vehicles or with a direct push percussion probing machine to locate hydrocarbon NAPLs and associated wastes in the subsurface at many sites
(
2
)
.
5.5
The CMOS camera takes images of the visible light fluorescence at approximately 30 frames per second (FPS) as the probe is advanced at approximately 2 cm/s. Images collected by the CMOS camera are sent to the instruments and computer system. The computer software analyzes the color in the pixels of the collected images. Pixels are analyzed for specific ranges of color typical of UV or green light induced fluorescence of hydrocarbons. The computer software determines the percent area in each image identified as hydrocarbon fluorescence.
5.6
To obtain better quality images at depths of interest, probe advancement may be halted. An icon on-screen enables the operator to acquire images when the probe is at rest in both UV and visible light or green and infrared light, depending on the probe used. These “still” images provide the operator with images of greater sharpness and clarity which are needed to observe the distribution of NAPL or formation color and/or texture (
Fig. 3
). The still images are saved at the depth acquired in the log file.
FIG. 3
Examples of Still Images
Examples of still images taken under UV light (A) and visible light (B) at the same depth with the OIP system while the probe is not moving. The product at this location was #2 fuel oil. Droplets, blebs, and ganglia of product are visible in both images.
5.7
The OIP system provides a real-time method to screen for NAPL at hydrocarbon contaminated sites. A graphical log is used to present a log of average percent area of fluorescence in the images, bulk formation EC, HPT injection pressure, and selected images (
Fig. 2
). Real-time data allow for adaptive planning in site investigations
(
12-
15
)
. The results from the OIP system can be used for identifying locations and specific depths for sampling or remedial actions.
5.8
Detection ranges for common fuels were assessed in a laboratory bench test
(
2
)
. Clean silica sand with 10 % moisture was spiked with multiple concentrations of common fuel-related contaminants (gasoline, diesel fuel, crude oil) and tested on the OIP-UV system. The crude oil tested could be observed below a bulk concentration of 100 mg/kg, fresh on-road diesel fuel was detected near 200 mg/kg, and fresh gasoline was detected at about 300 mg/kg. These products were observed as free phase droplets at low bulk concentrations in the clean sand-water matrix in this bench test, not as dissolved phase compounds. Product weathering, biodegradation, and site-specific soil and moisture conditions can have an impact and can raise the minimum detection limit significantly.
5.9
While the OIP-UV system uses a 265 nm to 275 nm UV source that can induce fluorescence of BTEX (benzene, toluene, ethyl benzene, and xylenes), the CMOS camera is currently not capable of detecting UV range fluorescence produced by these analytes.
5.10
The OIP log data can be modeled in 2D and/or 3D with appropriate software programs. These models provide useful visualization tools for describing the distribution of hydrocarbon NAPL contamination and associated wastes across a site. Soil images, EC, and HPT results can be used to determine lithology and contaminant migration pathways
(
2
,
11
,
16
)
.
5.11
The data obtained from application of this practice may be used to guide soil (Guide
D6282/D6282M
) and groundwater sampling (Guide
D6001/D6001M
) or placement of long-term monitoring wells (Practice
D5092/D5092M
, Guide
D6724/D6724M
, Practice
D6725/D6725M
).
5.11.1
The result from the OIP system can be used to optimize site remediation. OIP, EC, HPT, and CPT results can be used to identify locations and targeted depths for removal or remediation.
5.12
The OIP system can be used to assess the effectiveness of remediation on sites contaminated with hydrocarbons and associated waste materials. OIP logs can be run following remedial actions to assess a reduction or elimination of hydrocarbon fluorescence. Soil images can also be used to identify depths of soil impacted by remediation fluids through changes in soil color with visible light images, or the presence of fluorescent tracer dyes mixed with remedial fluids injected in the subsurface.
5.13
The OIP system cannot detect dissolved phase hydrocarbons. The membrane interface probe (MIP) (Practice
D7352
) is often used in conjunction with the OIP or independently to log dissolved phase contaminant plumes associated with hydrocarbon NAPL contamination, associated wastes, or other volatile organic compounds.