首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA ACE59937
到馆提醒
收藏跟踪
购买正版
Microfiltration Membrane Fouling Reduction in Reclamation of Agricultural Drainage Water 微滤膜在农业污水回用中的减污作用
发布日期: 2004-06-17
本研究的主要目的是优化预处理的微滤过程 膜脱盐前的农业排水。反向脉冲优化 已开发出一种方法,可大大扩展模型排水的无污染微滤,以及 有望减少化学清洗频率、运营成本和膜更换。 反向脉冲优化方案基于关闭污染物的假设 在渗透阻力作用下与MF膜表面接触,但静电排斥 相互作用可能会阻止单层污染物覆盖物的不可逆粘附。 处理农业排水的微滤工艺优化包括四个步骤。步 一种是利用直接显微镜确定膜表面的临界覆盖点 观测系统的现场可视化,从而确定正向过滤时间。 第二步是 估算清除膜上沉积的污染物颗粒所需的反向脉冲强度 通过分析水动力阻力和升力,以及厢式货车产生的表面力 德瓦尔斯和静电相互作用。第三步是使用直接测量法确定反向脉冲持续时间 显微镜观察以确保完全去除颗粒。第四步是应用优化的 小型中空纤维微滤的前向过滤时间和后向脉冲宽度/频率 系统优化方案将应用于实验室制备的排水模型,以及 阿拉莫河的真实排水样本。对阿拉莫河水样本进行分析,以确定潜在污染物的性质。A码 分馏程序用于固体、有机物、粒度分布和zeta电位 针对每种粒级(8.0、1.0、0.4和0.1µm)进行测定。对于合成水实验,每种尺寸 使用模型无机和有机污染物(如胶体二氧化硅、粘土、乳胶和有机物)对该部分进行模拟 微生物。MF反向脉冲系统用于评估优化的运行方案 实验室规模的中空纤维膜过滤器,每个过滤器配备100根双不对称外皮聚砜纤维 滤器MF反向脉冲系统能够实现由内而外、由外而内、死角、, 横流、恒压和恒流量运行模式。直接显微镜观察 该系统由聚碳酸酯和玻璃制成的流动池组成,安装在显微镜台上 如前所述,通过光学显微镜直接目视观察微生物和颗粒沉积 在别处直接显微镜观察利用了一个平板聚砜膜 在化学和物理上类似于实验室规模的中空纤维中使用的聚砜膜 系统 包括6个参考文献、图表。
The primary objective of this investigation is to optimize a microfiltration process to pretreat agricultural drainage water prior to membrane desalination. A back-pulse optimization approach has been developed to greatly extend fouling free microfiltration of model drainage waters, and is expected to reduce chemical cleaning frequency, operating costs, and membrane replacement. The back-pulse optimization scheme is based on the hypothesis that foulants are brought into close contact with MF membrane surfaces under force of permeation drag, but repulsive electrostatic interactions may prevent irreversible adhesion for monolayer foulant coverages. Optimization of a microfiltration process to treat agricultural drainage water consists of four steps. Step one is to determine the critical coverage point on the membrane surface using the direct microscopic observation system's in situ visualization, thus determining the forward filtration time. Step two is to estimate the intensity of back-pulse required to dislodge deposited foulant particles at the membrane surface through analysis of hydrodynamic drag and lift forces, as well as surface forces arising from van der Waals and electrostatic interactions. Step three is to determine the back-pulse duration using direct microscopic observation to ensure complete removal of particles. Step four is to apply the optimized forward filtration time and back-pulse duration/frequency to a bench-scale hollow fiber microfiltration system. The optimized scheme will be applied to model drainage waters prepared in our lab, as well as real drainage water samples from the Alamo River. Samples of Alamo River water are analyzed to determine the nature of potential foulants. A size fractionation procedure was employed with solids, organics, size distribution, and zeta potential determined for each size fraction (8.0, 1.0, 0.4, and 0.1 µm). For synthetic water experiments, each size fraction was simulated using model inorganic and organic foulants such as colloidal silica, clay, latex, and microorganisms. The MF back-pulsing system, used to evaluate the optimized operating scheme utilizes bench-scale, hollow fiber membrane filters with 100 dual asymmetrically skinned, polysulfone fibers per filter. The MF back-pulsing system is capable of any combination of inside-out, outside-in, dead-end, cross-flow, constant pressure, and constant flux modes of operation. The direct microscopic observation system consists of a flow cell constructed from polycarbonate and glass, mounted on a microscope stage to allow direct visual observation of microbial and particle deposition optical microscopy as described elsewhere. The direct microscopic observation utilizes a flat sheet polysulfone membrane that is chemically and physically analogous to the polysulfone membrane used in the bench-scale hollow fiber system. Includes 6 references, figures.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规