首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D4460-22a
到馆提醒
收藏跟踪
购买正版
Standard Practice for Calculating Precision Limits Where Values Are Calculated from Other Test Methods 从其他试验方法计算值时计算精度极限的标准实施规程
发布日期: 2022-11-01
1.1 材料和混合物特性,如空隙和矿物骨料中的空隙(VMA),根据两个或三个试验结果,结合简单的数学关系进行计算。这些计算值的标准偏差方程可以使用称为“误差传播”(也称为“不确定性传播”)的数学过程来建立。该实践包括四种形式的不确定度方程或材料和混合物方程:当两个试验结果为( 1. )相加或相减( 2. )相乘( 3. )一个被另一个分割( 4. )两个测试结果除以三分之一。 1.2 只有当两个标准的测试结果分布独立(即不相关)时,这种计算标准偏差方程的方法才有效。 1.3 计算出的标准偏差的准确性取决于用于各个测试结果方法的标准偏差准确性。 1.4 需要每个测试方法的平均值和标准偏差值来确定计算值的标准偏差。 1.5 如何使用这些方程的示例如所示 附录X1 . 1.6 还简要解释了如何为更复杂的材料和混合物方程导出标准差方程。 1.7 本标准的文本引用了提供解释材料的注释和脚注。这些注释和脚注(不包括表和图中的注释)不应视为本标准的要求。 1.8 本标准并不旨在解决与其使用相关的所有安全问题(如有)。 本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.9 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 4.1 计算值的精度声明可以使用此方法进行开发。用户还可以评估单个测试方法的精度如何影响计算值的可变性。 4.2 计算值的标准偏差是两个或多个测试方法结果的和、差、积或商,每个结果都有自己的精度声明,只要各个变量(即测试结果)是独立的,且标准偏差相对于其平均值较小,就可以计算出。 这些限制通常在ASTM方法中得到满足。在不满足这些限制的情况下,可以使用其他方法。本标准仅涵盖符合限制条件的情况。
1.1 Material and mixture properties such as air voids and voids in mineral aggregates (VMA) are calculated from two or three test results, combined in simple mathematical relationships. The standard deviation equations for these calculated values can be developed using a mathematical process called “propagation of errors” (also called “propagation of uncertainty”). This practice includes uncertainty equations for four forms or material and mixture equations: when two test results are ( 1 ) added or subtracted, ( 2 ) multiplied together, ( 3 ) one divided by the other, and ( 4 ) two test results divided by a third. 1.2 This approach to calculating standard deviation equations is only valid when the distributions of the test results from the two standards are independent (that is, not correlated). 1.3 The accuracy of a calculated standard deviation is dependent on the accuracy of the standard deviations used for the individual test result methods. 1.4 Values for the mean and standard deviation for each test method are needed to determine the standard deviation for a calculated value. 1.5 Examples of how to use these equations are shown in Appendix X1 . 1.6 A brief explanation of how standard deviation equations are derived for more complicated material and mixture equations is also included. 1.7 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Precision statements for calculated values can be developed using this approach. Users can also evaluate how an individual test method’s precision influences the variability of calculated values. 4.2 The standard deviation of a calculated value that is the sum, difference, product, or quotient of two or more test method results, each with their own precision statement, can be calculated so long as the individual variables (that is, test results) are independent and the standard deviations are small relative to their mean values. These restrictions are usually met in ASTM methods. In those cases where these restrictions are not met, other methods can be used. Only cases complying with the restrictions are covered in this standard.
分类信息
关联关系
研制信息
归口单位: D04.94
相似标准/计划/法规