1.1
This test method covers the laboratory procedure for determining the resistance of cushioned resilient floor coverings to punctures from dropped pointed objects such as dinner forks.
1.2
This test method employs a 35-g cylindrical dart with a flat, small-diameter tip that is dropped onto a specimen of flooring. The dart represents the weight of a typical fork and the tip produces a similar puncture to those which result from dropped forks.
1.3
Flooring with thick wear layers may not puncture under even the most severe drop. Although data can be obtained by increasing the drop height or the weight of the dart, values of this magnitude have no practical application.
1.4
The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
For specific precaution statement see
8.2
.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
Much of the cushioned resilient flooring in use today is in household kitchens. Kitchen flooring is frequently subjected to the hazard of dropped tableware and cutting knives, that can puncture the wear layer of cushioned resilient flooring. Food and soil that become embedded in these punctures often can not be removed by ordinary maintenance, resulting in unsightly marks. Moisture, grease, or oils that penetrate to the cushion layer can be wicked into the foam and cause permanent discoloration. Ultimately, the service life of the material is shortened.