首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D7412-22
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Condition Monitoring of Phosphate Antiwear Additives in In-Service Petroleum and Hydrocarbon Based Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry 用傅里叶变换红外(FT-IR)光谱法进行趋势分析的在用石油和碳氢化合物润滑剂中磷酸盐抗磨添加剂状态监测的标准试验方法
发布日期: 2022-10-01
1.1 本试验方法包括监测在用石油和碳氢化合物润滑剂中的磷酸盐抗磨添加剂,如各种类型的发动机机油、液压油和其他为防止磨损而配制的润滑剂。典型的磷酸盐抗磨添加剂包括二烷基二硫代磷酸锌、磷酸三烷基酯和磷酸三芳酯。 1.2 本试验方法使用傅里叶变换红外(FT-IR)光谱法监测正常机械操作导致的在役石油和碳氢基润滑剂中磷酸盐抗磨添加剂的损耗。监测在用润滑油中磷酸盐抗磨添加剂的消耗可以指示机器的异常磨损或严重运行条件。本试验方法设计为一种快速、简单的光谱检查,用于监测in中的磷酸盐抗磨添加剂- 维修石油和碳氢化合物润滑油,目的是通过测量润滑油中磷酸盐抗磨添加剂的含量来帮助诊断机器的运行状况。 1.3 实践中描述了用于测量在用润滑油和润滑剂样品中磷酸盐抗磨添加剂的FT-IR光谱数据的采集 D7418号 在本试验方法中,给出了使用直接趋势分析和差分(光谱减法)趋势分析的磷酸盐抗磨添加剂的测量和数据解释参数。 1.4 本试验方法基于在用石油和碳氢化合物润滑剂中磷酸盐抗磨添加剂的光谱变化趋势。警告或警报限值可以根据单个测量的固定最小值设置,或者也可以根据测量的响应变化率设置,参见参考 ( 1. ) . 2. 1.4.1 对于直接趋势分析,直接从吸收光谱记录值,并以每0.1 mm路径长度的吸光度单位报告。 1.4.2 对于差异趋势分析,从差异光谱中记录数值(从在用机油的吸收光谱中减去参考机油的吸收谱得到的光谱),并以每0.1倍100*吸光度为单位进行报告 mm路径长度(或每厘米等效吸光度单位)。 1.4.3 在任何一种情况下,应通过统计分析、相同或类似设备的历史记录、循环试验或其他方法,结合磷酸盐抗磨添加剂水平变化与设备性能的相关性,确定维护行动限值。 注1: 本试验方法的目的不是为任何机械确定或建议正常、警告、警告或警戒限值。 应结合机械制造商和维护小组的建议和指导,确定此类限制。 1.5 本试验方法适用于石油和碳氢化合物润滑油,不适用于酯基润滑油,包括多元醇酯或磷酸酯。 1.6 以国际单位表示的数值视为标准值。本标准不包括其他计量单位。 1.6.1 例外情况- 波数单位为厘米 -1 . 1.7 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 5.1 抗磨添加剂通常用于石油和碳氢化合物润滑油中,通过形成由摩擦热激活的化学屏障来防止机械磨损。磷酸盐抗磨添加剂可以通过使用磷酸盐吸收带的FT-IR光谱进行测量。最初,磷酸盐抗磨添加剂将通过与金属表面结合并通过氧化机制分解并形成保护膜,因此,在正常的机械操作期间,预计磷酸盐抗磨剂的含量相对于新油中的含量会降低。随后,当润滑剂经受高温和高湿度时,由于氧化或水解,磷酸盐抗磨添加剂会大量消耗。这通常发生在润滑剂氧化开始加速之前,使磷酸盐抗磨添加剂的趋势成为润滑剂残留的有用指标- 使用寿命。因此,磷酸盐抗磨添加剂消耗监测是确定整体机械健康状况的一个重要参数,应结合原子发射(AE)和原子吸收(AA)光谱等其他测试数据来考虑,以便进行磨损金属分析(测试方法 D5185型 )物理性能试验(试验方法 D445号 和 D2896型 )和其他用于氧化的FT-IR油分析方法(试验方法 D7414号 ),硫酸盐副产品(试验方法 D7415号 )和硝化(试验方法 D7624号 ),它还评估了石油状况的要素,参见参考文献 ( 1- 6. ) .
1.1 This test method covers monitoring phosphate antiwear additives in in-service petroleum and hydrocarbon based lubricants such as various types of engine oils, hydraulic oils, and other lubricants that are formulated for protection against wear. Typical phosphate antiwear additives include zinc dialkyldithiophosphates, trialkyl phosphates, and triaryl phosphates. 1.2 This test method uses Fourier Transform Infrared (FT-IR) spectrometry for monitoring of phosphate antiwear additive depletion in in-service petroleum and hydrocarbon based lubricants as a result of normal machinery operation. Monitoring the depletion of phosphate antiwear additives in in-service lubricants can indicate unusual wear or severe operating conditions of the machine. This test method is designed as a fast, simple spectroscopic check for monitoring of phosphate antiwear additives in in-service petroleum and hydrocarbon based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of phosphate antiwear additives in the oil. 1.3 Acquisition of FT-IR spectral data for measuring phosphate antiwear additives in in-service oil and lubricant samples is described in Practice D7418 . In this test method, measurement and data interpretation parameters for phosphate antiwear additives using both direct trend analysis and differential (spectral subtraction) trend analysis are presented. 1.4 This test method is based on trending of spectral changes associated with phosphate antiwear additives in in-service petroleum and hydrocarbon based lubricants. Warnings or alarm limits can be set on the basis of a fixed minimum value for a single measurement or, alternatively, can be based on a rate of change of the response measured, see Ref ( 1 ) . 2 1.4.1 For direct trend analysis, values are recorded directly from absorption spectra and reported in units of absorbance per 0.1 mm pathlength. 1.4.2 For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the absorption spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimeter). 1.4.3 In either case, maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of changes in the level of phosphate antiwear additives to equipment performance. Note 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning, or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group. 1.5 This test method is for petroleum and hydrocarbon based lubricants and is not applicable for ester based oils, including polyol esters or phosphate esters. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6.1 Exception— The unit for wave numbers is cm -1 . 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Antiwear additives are commonly used in petroleum and hydrocarbon based lubricants to prevent machinery wear by forming a chemical barrier activated by frictional heat. Antiwear additives that are phosphate based can be measured by FT-IR spectroscopy using the phosphate absorption band. Initially, phosphate antiwear additives will decompose and form a protective film by binding to metal surfaces and through oxidative mechanisms, and so a decrease in the level of phosphate antiwear additive relative to that in the new oil is expected during normal machinery operation. Subsequently, significant depletion of phosphate antiwear additives due to oxidation or hydrolysis can occur when the lubricant is subjected to high temperatures and high levels of moisture. This usually occurs prior to the point where the oxidation of the lubricant begins to accelerate, making trending of phosphate antiwear additives a useful indicator of the lubricant’s remaining in-service life. Monitoring of phosphate antiwear additive depletion is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185 ), physical property tests (Test Methods D445 and D2896 ) and other FT-IR oil analysis methods for oxidation (Test Method D7414 ), sulfate by-products (Test Method D7415 ), and nitration (Test Method D7624 ), which also assess elements of the oil’s condition, see Refs ( 1- 6 ) .
分类信息
关联关系
研制信息
归口单位: D02.96.03
相似标准/计划/法规