1.1本规程概述了独立干式存储γ射线辐照器应遵循的剂量测量程序。如果遵循这些程序,将有助于确保以可接受的精度和准确性进行校准和测试,并确保在自备干式贮存辐照器中用γ射线电离辐射处理的样品接收到预定范围内的吸收剂量。
1.2本规程涵盖了干式存储γ射线辐射器使用中的剂量测定,即独立干式存储
137
Cs或
60
Co辐射器(屏蔽独立辐射器)。它不包括水下池源、全景伽马射线-
射线源,例如机械或气动升高以各向同性照射到房间或通过准直器的射线源,也不包括自足的韧致辐射x射线装置。
1.3本实施规程涵盖的干式储存自备γ射线辐射器的吸收剂量范围通常为1到10
5.
Gy,取决于应用。吸收剂量率范围通常为10
-2
至10
3.
Gy/min。
1.4本规程描述了适用于所有独立干式存储γ射线辐照器的一般程序。有关血液辐照剂量测定的具体程序,请参阅ISO/ASTM规程51939。有关食品和农产品辐射研究中剂量测定的具体程序,请参阅ISO/ASTM规程51900。
有关辐射硬度测试的具体程序,请参阅ASTM规程E 1249。有关无菌释放程序中昆虫辐照剂量测定的具体程序,请参阅ISO/ASTM指南51940。在ISO/ASTM惯例51939、51900、51940或ASTM E 1249涵盖的情况下,以这些标准为准。此外,本规程不包括辐射防护仪器的吸收剂量率校准。
1.5
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全和健康实践,并确定监管限制的适用性。
====意义和用途======
4.1独立干式贮存γ射线辐照器包含放射源,即
137
Cs或
60
Co,在适当屏蔽的条件下发出电离电磁辐射(伽马射线)。这些辐射器有一个封闭的、可接近的辐射器样品室,与样品定位系统相连,例如辐射器抽屉、转子或辐射器转盘,作为辐照装置的一部分。
4.2独立干式存储γ射线辐射器可用于许多辐射处理应用,包括以下方面:剂量计的校准;研究用剂量计研究;用于诱导预期辐射效应或辐射工艺验证目的的相对较小样品的辐照;
用于工艺兼容性研究的材料或生物样品辐照;微生物、植物或体外样品的分批辐照;小动物辐照;电子元件和其他材料的辐射“硬度”测试;以及对相对较小的样本容器进行批量辐射处理,如血液制品、昆虫罐、修复装置和药品。
注1——对于辐照过的医疗保健产品、药品、食品、动物和植物,确保其正确辐照至关重要。辐照器操作员必须通过在样品或模拟产品中进行准确的吸收剂量测量来证明达到了规定的吸收剂量(见ISO/ASTM指南51261、ISO/ASTM实践51204、51400、51702和ISO 11137)。
对于大多数应用,吸收剂量表示为水中的吸收剂量(见ISO/ASTM指南51261)。关于将水中的吸收剂量转换为其他材料(例如硅、固态器件、聚合物)中的吸收剂量,请参阅ISO/ASTM指南51261的附录A1。
4.3自给式干式存储γ射线辐射器包含一个密封源,或一组密封源,完全保存在由固体材料制成的干燥容器中。密封源始终处于屏蔽状态,由于设计配置的原因,在物理上不可能有人进入辐照室(见ANSI N433.1)。
4.4对于每个辐射器,测量样品或样品架内参考位置处的吸收剂量率。
该测量值用于计算交付指定吸收剂量所需的计时器设置。辐照器制造商可在辐照室内进行参考标准测量和剂量图测量。
注2-对于参考标准剂量学,吸收剂量和吸收剂量率可以用水或其他具有与被辐照样品或剂量计类似辐射吸收特性的材料表示。在某些情况下,可使用电离室进行参考标准剂量测定,并可根据暴露量(C kg–1)或空气、水或组织中的吸收剂量(灰色)进行校准。
根据暴露进行的测量适用于空气中的电离,应注意将该测量应用于被辐照的样品。
4.5使用此类放射源进行的剂量测定可能是测量质量保证计划的一部分,该计划用于确保辐射过程、测试或校准符合预定规范(1)。9
4.6用于确定最小(Dmin)和最大(Dmax)剂量位置的吸收剂量映射通常使用样品或模拟产品进行(见9.3)。
1.1 This practice outlines dosimetric procedures to be followed with self-contained dry-storage gamma-ray irradiators. If followed, these procedures will help to ensure that calibration and testing will be carried out with acceptable precision and accuracy and that the samples processed with ionizing radiation from gamma rays in a self-contained dry-storage irradiator receive absorbed doses within a predetermined range.
1.2 This practice covers dosimetry in the use of dry-storage gamma-ray irradiators, namely self-contained dry-storage
137
Cs or
60
Co irradiators (shielded freestanding irradiators). It does not cover underwater pool sources, panoramic gamma-ray sources such as those raised mechanically or pneumatically to irradiate isotropically into a room or through a collimator, nor does it cover self-contained bremsstrahlung x-ray units.
1.3 The absorbed dose range for the use of the dry-storage self-contained gamma-ray irradiators covered by this practice is typically 1 to 10
5
Gy, depending on the application. The absorbed-dose rate range typically is from 10
-2
to 10
3
Gy/min.
1.4 This practice describes general procedures applicable to all self-contained dry-storage gamma-ray irradiators. For procedures specific to dosimetry in blood irradiation, see ISO/ASTM Practice 51939. For procedures specific to dosimetry in radiation research on food and agricultural products, see ISO/ASTM Practice 51900. For procedures specific to radiation hardness testing, see ASTM Practice E 1249. For procedures specific to the dosimetry in the irradiation of insects for sterile release programs, see ISO/ASTM Guide 51940. In those cases covered by ISO/ASTM Practices 51939, 51900, 51940, or ASTM E 1249, those standards take precedence. In addition, this practice does not cover absorbed-dose rate calibrations of radiation protection instrumentation.
1.5
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
====== Significance And Use ======
4.1 Self-contained dry-storage gamma-ray irradiators contain radioactive sources, namely
137
Cs or
60
Co, that emit ionizing electromagnetic radiation (gamma rays), under properly shielded conditions. These irradiators have an enclosed, accessible irradiator sample chamber connected with a sample positioning system, for example, irradiator drawer, rotor, or irradiator turntable, as part of the irradiation device.
4.2 Self-contained dry-storage gamma-ray irradiators can be used for many radiation processing applications, including the following: calibration of dosimeters; dosimeter studies for research; irradiations of relatively small samples for inducing desired radiation effects or for radiation process validation purposes; irradiation of materials or biological samples for process compatibility studies; batch irradiations of microbiological, botanical, or in-vitro samples; irradiation of small animals; radiation "hardness" testing of electronics components and other materials; and batch radiation processing of relatively small containers of samples, such as blood products, insect canisters, prosthetic devices, and pharmaceuticals.
NOTE 1 - In the case of irradiated health care products, pharmaceuticals, foodstuffs, animals and plants, the assurance that they are properly irradiated is of crucial importance. The irradiator operator must demonstrate by means of accurate absorbed dose measurements in sample, or in simulated product, that the specified absorbed dose is achieved (see ISO/ASTM Guide 51261, ISO/ASTM Practices 51204, 51400, 51702, and ISO 11137). For most applications, the absorbed dose is expressed as absorbed dose in water (see ISO/ASTM Guide 51261). For conversion of absorbed dose in water to that in other materials, for example, silicon, solid-state devices, polymers, see Annex A1 of ISO/ASTM Guide 51261.
4.3 Self-contained dry-storage gamma-ray irradiators contain a sealed source, or an array of sealed sources completely held in a dry container constructed of solid materials. The sealed sources are shielded at all times, and human access to the chamber undergoing irradiation is not physically possible due to design configuration (see ANSI N433.1).
4.4 For each irradiator, an absorbed--dose rate at a reference position within the sample or sample holder is measured. That measurement is used to calculate the timer setting required to deliver the specified absorbed dose. The irradiator manufacturer may perform reference-standard measurements and dosemapping measurements within the irradiation chamber.
NOTE 2 - For reference-standard dosimetry, the absorbed dose and absorbed-dose rate can be expressed in water or other material which has similar radiation absorption properties to that of the samples or dosimeters being irradiated. In some cases, the reference-standard dosimetry may be performed using ionization chambers, and may be calibrated in terms of exposure (C kg–1), or absorbed dose in air, water or tissue (gray). Measurements performed in terms of exposure apply to ionization in air, and care should be taken to apply that measurement to the sample being irradiated.
4.5 Dosimetry carried out with such sources may be part of a measurement quality assurance program that is applied to ensure that the radiation process, test or calibration meets predetermined specifications (1).9
4.6 Absorbed-dose mapping for establishing the locations of minimum (Dmin) and maximum (Dmax) doses usually is performed using the sample or simulated product (see 9.3).