首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 OT-88-01-4
到馆提醒
收藏跟踪
购买正版
Monitoring Data Yield Enhancements by Advanced Real-Time Data Compaction Algorithms 通过先进的实时数据压缩算法监控数据产量的提高
讨论了现场计算最终用途和性能参数的算法。这些算法正在西北部的一个大型监测项目中使用。它们有助于分解最终用途、量化HVAC热/通风性能和建筑物占用状态。这些算法有时会减少对传感器的需求,或实现其他不切实际的测量。监控通常会生成数据的周期平均值和总计。然而,有些现象不能用平均数或总数来描述。综合能源最终用途、热力和其他暖通空调参数就是例证。热泵有几种工作模式。将这些模式分解的直接测量通常成本高昂或不切实际。算法以模块化的方式组装,以达到预期的结果。 通过指定算法类型和用户指定的参数来调用它们。参数可以是测量参数、用户指定的常数或其他算法的输出。介绍了传感器的开发、算法和现场验证的有用经验。单位:双引文:研讨会,ASHRAE交易,1988年,第94卷,pt。2、渥太华
Algorithms for computing end-use and performance parameters on site are discussed. These algorithms are being used in a large northwestern monitoring program. They help to disaggregate end use, quantify HVAC thermal/ventilation performance, and building occupancy status. These algorithms sometimes reduce needs for sensors or enable otherwise impractical measurements.Monitoring typically produces periodic averages and totals of data. However, some phenomena are ill described by averages or totals. Aggregated energy end-use, thermal, and other HVAC parameters exemplify this. Heat pumps operate in several modes. Direct measurements to disaggregate these modes frequently are costly or impractical.Algorithms are assembled in modular fashion to achieve desired results. They are invoked by specifying algorithm type and user-specified arguments. Arguments may be measured parameters, user-specified constants, or outputs of other algorithms.Development, validation, field experience, and sensor needs for algorithms useful to building energy researchers are presented.Units: Dual
分类信息
发布单位或类别: 未知国家-其他未分类
关联关系
研制信息
相似标准/计划/法规