首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM C1270-97(2021)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Detection Sensitivity Mapping of In-Plant Walk-Through<brk /> Metal Detectors 厂内穿行式金属探测器探测灵敏度绘图的标准实施规程
发布日期: 2021-01-01
1.1 本规程涵盖了确定通过入口孔径的最弱检测路径和金属试件最差正交方向的程序。它生成检测灵敏度图,该图根据与检测灵敏度相关的术语对检测区域进行建模,并识别最弱的检测路径。检测灵敏度图支持灵敏度调整和性能评估程序(参见实践 C1269 和 C1309 ). 注1: 具有主要纵向分量的不对称金属物体,如手枪和刀具,通常具有一个特定方向,产生最弱的检测信号。对于所有测试对象,即使是外观非常相似的对象,产生最弱响应的探测器孔径的方向和路径也可能不同。 注2: 对于多个指定的测试对象或方向敏感的测试对象,可能需要多次映射每个对象,以确定最坏情况下的测试对象或方向,或两者。 1.2 本规程是为帮助通过金属探测器的操作员满足负责监管机构的金属探测性能要求而制定的几种规程之一。(参见 附录X2 ) 1.3 这种做法既不是为了设置性能级别,也不是为了限制或约束操作技术。 1.4 本规程不涉及与使用穿行金属探测器相关的安全或操作问题。 1.5 以国际单位制表示的数值应视为标准。括号中给出的值仅供参考。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 一组复杂的变量影响金属检测和检测灵敏度。影响检测的金属物体的一些物理特性包括材料成分、形状、表面积、表面和内部电磁学特性以及光洁度。测试对象的方向会对检测产生很大影响,方向和速度或通过检测区域时的速度变化也会对检测产生很大影响。 附近的大型金属物体和在金属探测器附近移动的金属也会影响操作,温度和湿度也会影响操作,并可能导致滋扰警报。此外,目前大多数制造的穿行金属探测器都有一些方法,用于针对特殊条件或要求对探测器的操作进行编程;如果测试程序要有效,必须考虑这些变量及其对厂内探测器运行的影响。本规程旨在通过使用监管机构要求规定的测试对象,在操作环境中对安装的探测器进行系统测试,将这些变量对厂内探测器操作的影响降至最低。 5.2 本规程可用于从一组测试对象中确定关键测试对象、其关键方向以及通过检测区的关键测试路径。 该信息可能允许使用单个测试对象来设置探测器的操作灵敏度,并执行必要的定期性能评估,以确保组中的所有测试对象在探测器的能力范围内都是可检测的。 5.3 本规程生成的检测灵敏度图为指定测试对象提供了基线金属检测数据,并可作为厂内金属探测器设置和性能评估测试的基础。检测灵敏度图可纳入检测器性能测试日志,以支持性能评估实践。 5.4 该实践可以深入了解步行的某些金属检测特征- 通过金属探测器,特别是不同金属和测试对象方向对检测能力的影响,这有助于优化用于检测特定武器或屏蔽材料或两者的探测器灵敏度设置。 5.5 定期执行本规程并分析结果,可提供一种手段来监测厂内探测器的健康状态,并进一步了解探测器的应用和操作。
1.1 This practice covers a procedure for determining the weakest detection path through the portal aperture and the worst-case orthogonal orientation of metallic test objects. It results in detection sensitivity maps, which model the detection zone in terms related to detection sensitivity and identify the weakest detection paths. Detection sensitivity maps support sensitivity adjustment and performance evaluation procedures (see Practices C1269 and C1309 ). Note 1: Unsymmetrical metal objects possessing a primary longitudinal component, such as handguns and knives, usually have one particular orientation that produces the weakest detection signal. The orientation and the path through the detector aperture where the weakest response is produced may not be the same for all test objects, even those with very similar appearance. Note 2: In the case of multiple specified test objects or for test objects that are orientation sensitive, it may be necessary to map each object several times to determine the worst-case test object or orientation, or both. 1.2 This practice is one of several developed to assist operators of walk-through metal detectors with meeting the metal detection performance requirements of the responsible regulatory authority. (See Appendix X2 ) 1.3 This practice is neither intended to set performance levels, nor limit or constrain operational technologies. 1.4 This practice does not address safety or operational issues associated with the use of walk-through metal detectors. 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 A complex set of variables affect metal detection and detection sensitivity. Some physical characteristics of metal objects that influence detection are material composition, shape, surface area, surface and internal electrical and magnetic properties, and finish. The orientation of a test object can greatly influence detection as can the direction and speed or changes in speed while passing through the detection zone. Nearby large metal objects and metal moving in near proximity to a metal detector also affect operation, as do temperature and humidity, and can be a cause for nuisance alarms. Additionally, most currently manufactured walk-through metal detectors have some means for programming the operation of the detector for special conditions or requirements; these variables and the effect they have on the operation of in-plant detectors must be considered if a test program is to be effective. This practice is intended to minimize the impact of these variables on the operation of in-plant detectors by systematically testing the installed detectors in the operating environment with the test object(s) specified by the regulatory authority requirements. 5.2 This practice may be used to determine the critical test object from a group of test objects, its critical orientation, and the critical test path through the detection zone. This information may allow the use of a single test object for setting the operational sensitivity of the detector and performing periodic performance evaluations necessary to ensure a high probability that all test objects in the group are detectible within the capabilities of the detector. 5.3 The detection sensitivity map(s) generated by this practice provides baseline metal detection data for the specified test objects and can serve as a foundation for in-plant walk-through metal detector set-up and performance evaluation testing. The detection sensitivity map(s) may be incorporated into a detector performance test log in support of performance evaluation practices. 5.4 This practice may provide insight into certain metal detection characteristics of walk-through metal detectors, particularly the effect of different metals and test object orientations on detection capability, that are useful for optimizing detector sensitivity settings for detection of specified weapons or shielding material, or both. 5.5 Periodic performance of this practice and analysis of the results may provide a means to monitor the state of health of in-plant detectors and to gain further insight into detector application and operation.
分类信息
关联关系
研制信息
归口单位: F12.60
相似标准/计划/法规