首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2854/E2854M-21
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating Response Robot Radio Communications Line-of-Sight Range 评定机器人无线电通信视线范围的标准试验方法
发布日期: 2021-01-01
1.1 本试验方法适用于使用无线电通信在机器人及其远程操作员界面之间传输实时数据的远程操作地面机器人。该测试方法测量机器人能够保持全方位转向、速度控制、精确停车、视力和其他功能的最大视线无线电通信距离。该测试方法是可用于评估整体系统能力的几个相关无线电通信测试之一。 1.2 远程操作员控制所有功能,因此通常需要车载摄像机和远程操作员显示器。辅助功能或自主行为可以提高整个系统的有效性或效率。 1.3 不同的用户群体可以在该测试方法中设置自己的可接受性能阈值,以满足各种任务需求。 1.4 执行位置- 本试验方法可在任何可实施规定装置和环境条件的地方进行。 1.5 本文件使用国际单位制(又称国际单位制)和美国惯用单位(又称英制单位)。它们不是数学转换。相反,它们是每个单位制中的近似等价物,以便在不同国家使用现成的材料。为了比较试验方法结果,每个单元系统中规定尺寸之间的差异无关紧要,因此每个单元系统在本试验方法中单独视为标准。 1.6 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 该测试方法是一整套相关测试的一部分,这些测试为远程操作机器人提供了可再现的无线电通信测量。它使用全方位机器人机动和视力任务来测量机器人与其远程操作员界面之间的最大视线无线电通信范围,以评估由于通信延迟和丢失而导致的基本任务能力下降。 5.2 该测试方法价格低廉,易于制造,操作简单,因此可以广泛复制。这使得能够跨不同测试位置和日期进行比较,以确定最佳- 课堂系统能力和远程操作员熟练程度。 5.3 评估- 该测试方法可以在没有射频干扰和最小无线电传播影响的受控环境中进行,以测量基线能力,可以在机器人系统中进行广泛比较。它还可以嵌入到任何操作训练场景中,作为视线无线电通信范围的实际测量,由于射频干扰、天气等不可控变量,会导致额外的降级。只有在类似条件下在相同环境中进行时,才能跨机器人系统比较这些场景测试的结果。然而,由于存在不受控变量,因此无法将结果与其他场馆或环境条件的结果进行可靠比较。 5.4 采购- 该测试方法可用于确定系统中的固有能力权衡,做出明智的采购决策,并在验收测试期间验证性能。 这使需求规范和用户期望与现有的能力限制保持一致。 5.5 培训- 该测试方法可用于将操作员培训作为可重复的实践任务或培训场景中的嵌入式任务。操作员可以了解无线通信降级期间的系统行为,并改进技术以缓解执行任务时的问题。由此产生的远程操作员熟练程度测量可以跟踪随时间变化的易逝技能,以及跨组织、区域或国家平均水平的绩效比较。 5.6 创新- 该测试方法可用于激发技术创新,演示突破能力,并测量在整个任务序列中执行特定任务的系统的可靠性。组合或排序多个测试可以指导制造商实现执行基本任务所需的能力组合。
1.1 This test method is intended for remotely operated ground robots using radio communications to transmit real-time data between a robot and its remote operator interface. This test method measures the maximum line-of-sight radio communications distance at which a robot can maintain omnidirectional steering, speed control, precise stopping, visual acuity, and other functionality. This test method is one of several related radio communication tests that can be used to evaluate overall system capabilities. 1.2 A remote operator is in control of all functionality, so an onboard camera and remote operator display are typically required. Assistive features or autonomous behaviors may improve the effectiveness or efficiency of the overall system. 1.3 Different user communities can set their own thresholds of acceptable performance within this test method to address various mission requirements. 1.4 Performing Location— This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented. 1.5 The International System of Units (a.k.a. SI Units) and U.S. Customary Units (a.k.a. Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable the use of readily available materials in different countries. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method is part of an overall suite of related tests that provide reproducible measures of radio communications for remotely operated robots. It measures the maximum line-of-sight radio communications range between a robot and its remote operator interface using omnidirectional robot maneuvering and visual acuity tasks to evaluate the degradation of essential mission capabilities due to communications latency and loss. 5.2 This test method is inexpensive, easy to fabricate, and simple to conduct so it can be replicated widely. This enables comparisons across various testing locations and dates to determine best-in-class system capabilities and remote operator proficiency. 5.3 Evaluations— This test method can be conducted in a controlled environment with no radio frequency interference and minimal radio propagation effects to measure baseline capabilities that can be compared widely across robotic systems. It also can be embedded into any operational training scenario as a practical measure of line-of-sight radio communications range with additional degradation due to uncontrolled variables such as radio frequency interference, weather, etc. The results of these scenario tests can be compared across robotic systems only when conducted in the same environment in similar conditions. However, the results cannot be compared reliably to results from other venues or environmental conditions due to the uncontrolled variables. 5.4 Procurement— This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits. 5.5 Training— This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. Operators can learn system behaviors during radio communication degradation and refine techniques to mitigate issues while performing tasks. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across organizations, regions, or national averages. 5.6 Innovation— This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple tests can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.
分类信息
关联关系
研制信息
归口单位: E54.09
相似标准/计划/法规
现行
ASTM E2855-12(2021)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Non-Line-of-Sight Range
评估应急机器人功能的标准测试方法:无线电通信:非视距范围
2021-01-01
现行
ASTM E3426/E3426M-24
Standard Test Method for Evaluating Aerial Response Robot Endurance
评估空中反应机器人耐久性的标准试验方法
2024-02-01
现行
ASTM E2566/E2566M-24
Standard Test Method for Evaluating Response Robot Sensing: Visual Acuity
评估响应机器人感应的标准测试方法:视力
2024-11-01
现行
ASTM E2991/E2991M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Gravel Terrain
评估响应机器人移动性的标准测试方法:横移砾石地形
2017-09-01
现行
ASTM E2853/E2853M-22
Standard Test Method for Evaluating Ground Response Robot Capabilities: Search Tasks
评估地面反应机器人能力的标准试验方法:搜索任务
2022-05-01
现行
ASTM E2992/E2992M-24
Standard Test Method for Evaluating Response Robot Mobility: Traverse Sand Terrain
评估反应机器人移动性的标准测试方法:横穿沙地形
2024-12-01
现行
ASTM E3380/E3380M-23
Standard Test Method for Evaluating Ground Response Robot Endurance Using Reproducible Terrains
使用可复制地形评估地面反应机器人耐久性的标准试验方法
2023-04-01
现行
ASTM E3408/E3408M-23
Standard Test Method for Evaluating Ground Response Robot Capabilities: Dexterity: Linear Inspection
评估地面反应机器人能力的标准试验方法:灵活性:线性检验
2023-09-15
现行
ASTM E2828/E2828M-20
Standard Test Method for Evaluating Response Robot Mobility Using Symmetric Stepfields Terrains
用对称阶梯场地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2802/E2802M-21e1
Standard Test Method for Evaluating Response Robot Mobility Using Variable Hurdle Obstacles
用可变跨栏障碍物评价机器人机动性的标准试验方法
2021-03-01
现行
ASTM E2801-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Gaps
评估应急机器人功能的标准测试方法:移动性:限制区域障碍:差距
2020-01-01
现行
ASTM E2826/E2826M-20
Standard Test Method for Evaluating Response Robot Mobility Using Continuous Pitch/Roll Ramp Terrains
使用连续俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2827/E2827M-20
Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains
用交叉俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2829-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Maneuvering Tasks: Sustained Speed
评估应急机器人功能的标准测试方法:移动性:机动任务:持续速度
2020-01-01
现行
ASTM E2803-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Inclined Planes
评估应急机器人功能的标准测试方法:移动性:密闭区域障碍物:倾斜飞机
2020-01-01
现行
ASTM E2804-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Stairs/Landings
评估应急机器人功能的标准测试方法:移动性:限制区域障碍物:楼梯/着陆
2020-01-01
现行
ASTM E2830-11(2020)
Standard Test Method for Evaluating the Mobility Capabilities of Emergency Response Robots Using Towing Tasks: Grasped Sleds
使用牵引任务评估应急机器人的移动能力的标准测试方法:抓住雪橇
2020-01-01