首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA WQTC62378
到馆提醒
收藏跟踪
购买正版
Improvement of Ozone Disinfection: Application of Integrated Flow Modeling and Full-Scale Validation 臭氧消毒的改进:综合流动建模和全尺寸验证的应用
发布日期: 2005-11-01
阿姆斯特丹供水公司使用臭氧作为细菌、贾第鞭毛虫和病毒的屏障 在其两个水处理厂:Leiduin和Weesperkarspel。除了用于消毒, 臭氧还被用来消除有机微量污染物,刺激地球上的生物活动 活性炭过滤器在臭氧处理之后。更严格的立法和 在沙丘渗透区放牛放牧的津贴导致 所需的消毒能力。为了提高消毒能力,增加 考虑臭氧剂量(Hijnen等人,2001年)。然而,更高的臭氧剂量也会导致 更高的溴酸盐浓度(Orlandini等人,1997年)。进一步优化 因此需要臭氧系统。 一般来说,臭氧系统可分为两部分,加药设备和控制系统 反应流部分,与溶解的臭氧残留物发生反应。 臭氧可以通过鼓泡塔或注入装置添加到水流中。全部 荷兰的规模化装置均采用鼓泡塔进行臭氧添加。臭氧系统的水力特性对这两部分都有影响;大量 鼓泡塔中的传递和混合以及鼓泡塔中的停留时间分布 反应流部分在很大程度上决定了消毒性能和副产物 组成在鼓泡塔中,需要混合以获得均匀的臭氧残留 浓度另一方面,为了获得更好的消毒效果,需要使用塞流 (通过短路防止短暂停留时间)。然而,塞流缺乏混合 能力。 计算流体力学(CFD)的应用提供了精确计算的可能性 描述液压条件。将CFD结果与实验室的实验数据进行比较 中试和台架试验。此外,还进行了全尺寸实验,以确定 北京市雷都因污水处理厂臭氧系统停留时间分布 阿姆斯特丹供水公司。中试工厂试验在贝伦帕亚特进行 埃维德斯水务公司的水处理厂。实验室规模的数据收集在一个实验室中 Kiwa Water Research的推流式反应堆。包括10个参考文献、表格和图表。
Amsterdam Water Supply uses ozonation as a barrier for bacteria, Giardia and viruses at two of its water treatment plants: Leiduin and Weesperkarspel. In addition to being used for disinfection, ozone is also used to eliminate organic micro-pollutants and to stimulate biological activity on the activated carbon filters following the ozone process. More stringent legislation and the allowance to put cattle to pasture in the dune infiltration area lead to an increase of the required disinfection capacity. To improve the disinfection capacity, increasing the ozone dose is considered (Hijnen et al, 2001). However, higher ozone doses also will lead to higher bromate concentrations (Orlandini et al, 1997). Further optimization of the ozone systems is therefore required. In general, an ozone system can be divided into two parts, the dosing equipment and the reactive flow part, where the reaction with the dissolved ozone residual takes place. Ozone can be added to the water stream by bubble columns, or injection devices. The full scale installations in the Netherlands all apply bubble columns for ozone addition. The hydraulic characteristics of the ozone system influence both parts; mass transfer and mixing in the bubble column as well as residence time distribution in the reactive flow part largely determine the disinfection performance and the byproducts formation. In the bubble column, mixing is required to get a uniform ozone residual concentration. On the other hand plug flow is desired to get better disinfection results (prevent short residence times by short-circuiting). However, plug flow lacks mixing capabilities. Application of Computational Fluid Dynamics (CFD) offers the possibility of accurately describing the hydraulic conditions. CFD results are compared to experimental data from pilot and bench scale experiments. Also full scale experiments were done to determine the residence time distribution of the ozone system at the Leiduin water treatment plant of Amsterdam Water Supply. The pilot plant experiments were conducted at the Berenplaat water treatment plant of the Evides water company. Lab-scale data were collected in a plug-flow reactor at Kiwa Water Research. Includes 10 references, table, figures.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规