首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2848-13(2023)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Reporting Photovoltaic Non-Concentrator System Performance 光伏非集中器系统性能报告的标准试验方法
发布日期: 2023-08-01
1.1 该测试方法提供了测量和分析程序,用于确定在特定地点建造并在自然阳光下运行的特定光伏系统的容量。 1.2 此测试方法用于以下目的: 1.2.1 新安装光伏系统的验收测试, 1.2.2 直流或交流系统性能报告,以及 1.2.3 光伏系统性能监测。 1.3 此测试方法不应用于: 1.3.1 单个光伏模块的测试,以与铭牌额定功率进行比较, 1.3.2 单个光伏模块或系统的测试,以与其他光伏模块或体系进行比较,以及 1.3.3 对光伏系统进行测试,以比较位于不同位置的光伏系统的性能。 1.4 在该测试方法中,光伏系统功率是根据一组报告条件(RC)报告的,包括模块平面内的太阳辐照度、环境温度和风速(见第节 6. )。允许在各种报告条件下进行测量,以便于测试和比较结果。 1.5 该测试方法假设太阳能电池温度直接受到环境温度和风速的影响;如果不是,则回归结果可能不那么有意义。 1.6 根据该测试方法测量的容量不应用于表示系统的发电能力。 1.7 此测试方法不适用于集中器光伏系统;作为替代方案,试验方法 E2527 对于这样的系统应该考虑。 1.8 以国际单位制表示的数值应视为标准。本标准中不包括其他计量单位。 1.9 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.10 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ===意义和用途====== 5.1 由于该测试方法中有许多选择,这些选择取决于不同的应用程序和系统配置,因此该测试方法的用户有责任在开始测量之前指定单个系统功率测量的细节和协议。 5.2 与在25的固定设备温度下报告性能的设备级测量不同 °C,如试验方法 E1036 ,该测试方法使用参考环境空气温度的回归。 5.2.1 因此,与在相对较冷的设备温度(如25℃)下报告性能相比,使用该测试方法计算的系统功率值更能说明系统实际产生的功率 °C。 5.2.2 通过避免与定义和测量整个光伏系统的设备温度相关联的问题,使用环境温度降低了数据采集和分析的复杂性。 5.2.3 该测试方法的用户必须选择收集系统数据的时间段,以及在 8.3 。 5.2.4 假设系统性能在数据收集时间段内不会降低或改变。这种假设会影响数据收集周期的选择,因为系统性能可能会有季节性变化。 5.3 辐照度应在被测模块的平面内进行测量。如果存在多个平面(特别是在起伏地形的情况下),则必须报告将进行辐照度测量的一个或多个平面以及测试结果。如果该测试方法用于光伏系统的验收测试或合同目的的光伏系统性能报告,则在测试开始前,将进行辐照度测量的一个或多个平面必须得到测试各方的同意。 注1: 一般来说,辐照度测量应在大多数模块所在的平面内进行。将测量设备放置在比大多数设备倾斜更大的平面上,将导致冬季明显性能不足,夏季性能过高。 5.3.1 当数据收集期间测得的辐照度、环境温度和风速数据分布在报告条件周围时,线性回归结果将是最可靠的。如果情况并非如此,则报告的功率将是对报告条件的外推。 5.4 光伏模块上的污垢(污垢)积累可能会对系统额定值产生重大影响。 本测试的用户可能希望在进行测试之前消除或量化模块上的污染程度。 5.5 在连续的数据收集周期内,在相同的系统上对相同的RC进行重复的回归计算,并使用相同类型的辐照度测量设备,可用于监测作为时间函数的性能变化。 5.6 容量测定是功率测量,足以证明系统的完整性。然而,单个容量测量不能提供足够的信息来预测系统随时间的发电潜力。随着时间的推移,可能影响能源生产的因素包括: 模块功率下降、逆变器削波和过载、阴影、回溯、极端方向和滤波标准。
1.1 This test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. 1.2 This test method is used for the following purposes: 1.2.1 Acceptance testing of newly installed photovoltaic systems, 1.2.2 Reporting of dc or ac system performance, and 1.2.3 Monitoring of photovoltaic system performance. 1.3 This test method should not be used for: 1.3.1 Testing of individual photovoltaic modules for comparison to nameplate power ratings, 1.3.2 Testing of individual photovoltaic modules or systems for comparison to other photovoltaic modules or systems, and 1.3.3 Testing of photovoltaic systems for the purpose of comparing the performance of photovoltaic systems located in different places. 1.4 In this test method, photovoltaic system power is reported with respect to a set of reporting conditions (RC) including solar irradiance in the plane of the modules, ambient temperature, and wind speed (see Section 6 ). Measurements under a variety of reporting conditions are allowed to facilitate testing and comparison of results. 1.5 This test method assumes that the solar cell temperature is directly influenced by ambient temperature and wind speed; if not the regression results may be less meaningful. 1.6 The capacity measured according to this test method should not be used to make representations about the energy generation capabilities of the system. 1.7 This test method is not applicable to concentrator photovoltaic systems; as an alternative, Test Method E2527 should be considered for such systems. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Because there are a number of choices in this test method that depend on different applications and system configurations, it is the responsibility of the user of this test method to specify the details and protocol of an individual system power measurement prior to the beginning of a measurement. 5.2 Unlike device-level measurements that report performance at a fixed device temperature of 25 °C, such as Test Methods E1036 , this test method uses regression to a reference ambient air temperature. 5.2.1 System power values calculated using this test method are therefore much more indicative of the power a system actually produces compared with reporting performance at a relatively cold device temperature such as 25 °C. 5.2.2 Using ambient temperature reduces the complexity of the data acquisition and analysis by avoiding the issues associated with defining and measuring the device temperature of an entire photovoltaic system. 5.2.3 The user of this test method must select the time period over which system data are collected, and the averaging interval for the data collection within the constraints of 8.3 . 5.2.4 It is assumed that the system performance does not degrade or change during the data collection time period. This assumption influences the selection of the data collection period because system performance can have seasonal variations. 5.3 The irradiance shall be measured in the plane of the modules under test. If multiple planes exist (particularly in the case of rolling terrain), then the plane or planes in which irradiance measurement will occur must be reported with the test results. In the case where this test method is to be used for acceptance testing of a photovoltaic system or reporting of photovoltaic system performance for contractual purposes, the plane or planes in which irradiance measurement will occur must be agreed upon by the parties to the test prior to the start of the test. Note 1: In general, the irradiance measurement should occur in the plane in which the majority of modules are oriented. Placing the measurement device in a plane with a larger tilt than the majority will cause apparent under-performance in the winter and over-performance in the summer. 5.3.1 The linear regression results will be most reliable when the measured irradiance, ambient temperature, and wind speed data during the data collection period are distributed around the reporting conditions. When this is not the case, the reported power will be an extrapolation to the reporting conditions. 5.4 Accumulation of dirt (soiling) on the photovoltaic modules can have a significant impact on the system rating. The user of this test may want to eliminate or quantify the level of soiling on the modules prior to conducting the test. 5.5 Repeated regression calculations on the same system to the same RC and using the same type of irradiance measurement device over successive data collection periods can be used to monitor performance changes as a function of time. 5.6 Capacity determinations are power measurements and are adequate to demonstrate system completeness. However, a single capacity measurement does not provide sufficient information to project the energy generation potential of the system over time. Factors that may affect energy generation over time include: module power degradation, inverter clipping and overloading, shading, backtracking, extreme orientations, and filtering criteria.
分类信息
关联关系
研制信息
归口单位: E44.09
相似标准/计划/法规