首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM 51649-22e1
到馆提醒
收藏跟踪
购买正版
Standard Practice for Electron Beam Radiation Processing at Energies Between 300 keV and 25 MeV 能量在300kev和25mev之间的电子束辐射加工的标准实施规程
发布日期: 2022-12-01
1.1 本规范概述了在电子束设施的安装鉴定(IQ)、操作鉴定(OQ)和性能鉴定(PQ)以及常规处理中应遵循的剂量测定程序。 1.2 本实践中涵盖的电子束能量范围在300 keV和25 MeV之间,尽管对其他能量也有一些讨论。 1.3 剂量测定只是遵守辐射处理应用中使用的良好生产规范的全面质量保证计划的一个组成部分。对于诸如保健产品灭菌和食品保存的特定应用,可能需要除剂量测定之外的其他措施。 1.4 保健品的辐射灭菌和食品的辐照都有具体的标准。保健用品的辐射灭菌,见ISO 11137-1(要求)和ISO 11137-3(剂量学方面指南)。关于食品的辐照,参见ISO 14470。在这些标准涵盖的领域,它们优先。有关食品的有效或监管剂量限值的信息不在本规范的范围内(参见ASTM指南 F1355 , F1356 , F1736 ,和 F1885 ). 1.5 本文件是一套标准之一,为在辐射处理中正确实施和利用剂量测定提供了建议。它旨在与ASTM一起阅读 52628 ,“辐射处理中剂量测定的实践”。 附注1: 有关常规剂量测定系统校准的指导,请参见ASTM实践 51261 关于使用特定剂量测定系统的进一步指导,请参见相关的ASTM实践。关于脉冲辐射的辐射剂量测定的讨论,见ICRU报告34。1.6 本标准并不旨在解决与其使用相关的所有安全性问题(如果有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践并确定法规限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ======意义和用途====== 4.1 各种产品和材料在电子束设施中以预定剂量常规辐照,以保持或改变其特性。剂量测定要求可能因辐射过程和产品的最终用途而异。下面给出了可以使用剂量测定法的过程的部分列表。 4.1.1 单体聚合和单体接枝到聚合物上, 4.1.2 聚合物的交联或降解, 4.1.3 复合材料的固化、 4.1.4 保健品灭菌、 4.1.5 消费品消毒、 4.1.6 食品辐照(寄生虫和病原体控制、昆虫消毒和保质期延长), 4.1.7 控制饮用水中的病原体和毒素, 4.1.8 控制液体或固体废物中的病原体和毒素, 4.1.9 半导体器件特性的修改、 4.1.10 宝石和其他材料的颜色增强,以及 4.1.11 辐射对材料影响的研究。4.2 剂量测定法被用作监测辐照过程的手段。 附注2: 对于受管制的辐射过程,如卫生保健产品的灭菌,需要具有测量可追溯性和已知不确定性的剂量测定(参见ISO 11137-1和参考文献 ( 1- 3 6 ) )和食品的保存(参见ISO 14470和参考文献 ( 4 ) ).对于其他过程,例如聚合物改性,其可能不太重要,可以通过辐照材料的物理和化学性质的变化来评估。然而,常规剂量测定法可用于监测治疗过程的再现性。 附注3: 测量剂量通常表征为水中的吸收剂量。通常在一次性医疗器械和食品中发现的材料在电离辐射吸收方面与水大致相当。水以外的材料中的吸收剂量可以通过应用转换因子来确定 ( 5 , 6 ) . 4.3 照射过程通常需要最小的吸收剂量来实现期望的效果。还可能存在产品在仍符合其功能或监管规格的同时可以耐受的最大剂量限制。剂量测定法至关重要,因为它用于在研发阶段确定这两个限值,并确认产品在这些限值内进行常规辐照。 4.4 产品内的剂量分布取决于工艺负载特性、辐照条件和操作参数。 4.5 剂量测定系统必须经过校准,可追溯到国家或国际标准,并且必须知道测量不确定度。4.6 在使用辐射设备之前,必须对其进行表征,以确定其在可重复地递送已知、可控剂量方面的有效性。这包括测试和校准工艺设备和剂量测定系统。 4.7 在辐射过程开始之前,必须对其进行验证。这包括执行安装鉴定(IQ)、操作鉴定(OQ)和性能鉴定(PQ),在此基础上建立工艺参数,以确保产品在规定的限度内辐照。 4.8 为了确保在经验证的工艺中一致和可重复的剂量输送,常规工艺控制要求为辐照前、辐照中和辐照后要进行的活动建立文件化的程序,例如确保一致的产品装载配置以及监测关键操作参数和常规剂量测定。
1.1 This practice outlines dosimetric procedures to be followed in installation qualification (IQ), operational qualification (OQ) and performance qualifications (PQ), and routine processing at electron beam facilities. 1.2 The electron beam energy range covered in this practice is between 300 keV and 25 MeV, although there are some discussions for other energies. 1.3 Dosimetry is only one component of a total quality assurance program for adherence to good manufacturing practices used in radiation processing applications. Other measures besides dosimetry may be required for specific applications such as health care product sterilization and food preservation. 1.4 Specific standards exist for the radiation sterilization of health care products and the irradiation of food. For the radiation sterilization of health care products, see ISO 11137-1 (Requirements) and ISO 11137-3 (Guidance on dosimetric aspects). For irradiation of food, see ISO 14470. In those areas covered by these standards, they take precedence. Information about effective or regulatory dose limits for food products is not within the scope of this practice (see ASTM Guides F1355 , F1356 , F1736 , and F1885 ). 1.5 This document is one of a set of standards that provides recommendations for properly implementing and utilizing dosimetry in radiation processing. It is intended to be read in conjunction with ASTM 52628 , “Practice for Dosimetry in Radiation Processing.” Note 1: For guidance in the calibration of routine dosimetry systems, see ASTM Practice 51261 . For further guidance in the use of specific dosimetry systems, see relevant ASTM practices. For discussion of radiation dosimetry for pulsed radiation, see ICRU Report 34. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Various products and materials are routinely irradiated at pre-determined doses at electron beam facilities to preserve or modify their characteristics. Dosimetry requirements may vary depending on the radiation process and end use of the product. A partial list of processes where dosimetry may be used is given below. 4.1.1 Polymerization of monomers and grafting of monomers onto polymers, 4.1.2 Cross-linking or degradation of polymers, 4.1.3 Curing of composite materials, 4.1.4 Sterilization of health care products, 4.1.5 Disinfection of consumer products, 4.1.6 Food irradiation (parasite and pathogen control, insect disinfestation, and shelf-life extension), 4.1.7 Control of pathogens and toxins in drinking water, 4.1.8 Control of pathogens and toxins in liquid or solid waste, 4.1.9 Modification of characteristics of semiconductor devices, 4.1.10 Color enhancement of gemstones and other materials, and 4.1.11 Research on radiation effects on materials. 4.2 Dosimetry is used as a means of monitoring the irradiation process. Note 2: Dosimetry with measurement traceability and known uncertainty is required for regulated radiation processes such as sterilization of health care products (see ISO 11137-1 and Refs ( 1- 3 6 ) ) and preservation of food (see ISO 14470 and Ref ( 4 ) ). It may be less important for other processes, such as polymer modification, which may be evaluated by changes in the physical and chemical properties of the irradiated materials. Nevertheless, routine dosimetry may be used to monitor the reproducibility of the treatment process. Note 3: Measured dose is often characterized as absorbed dose in water. Materials commonly found in single-use disposable medical devices and food are approximately equivalent to water in the absorption of ionizing radiation. Absorbed dose in materials other than water may be determined by applying conversion factors ( 5 , 6 ) . 4.3 An irradiation process usually requires a minimum absorbed dose to achieve the desired effect. There may also be a maximum dose limit that the product can tolerate while still meeting its functional or regulatory specifications. Dosimetry is essential, since it is used to determine both of these limits during the research and development phase, and also to confirm that the product is routinely irradiated within these limits. 4.4 The dose distribution within the product depends on process load characteristics, irradiation conditions, and operating parameters. 4.5 Dosimetry systems must be calibrated with traceability to national or international standards and the measurement uncertainty must be known. 4.6 Before a radiation facility is used, it must be characterized to determine its effectiveness in reproducibly delivering known, controllable doses. This involves testing and calibrating the process equipment, and dosimetry system. 4.7 Before a radiation process is commenced it must be validated. This involves execution of Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ), based on which process parameters are established that will ensure that product is irradiated within specified limits. 4.8 To ensure consistent and reproducible dose delivery in a validated process, routine process control requires that documented procedures are established for activities to be carried out before, during and after irradiation, such as for ensuring consistent product loading configuration and for monitoring of critical operating parameters and routine dosimetry.
分类信息
关联关系
研制信息
归口单位: E61.03
相似标准/计划/法规
现行
ASTM ISO/ASTM51649-22
Standard Practice for Electron Beam Radiation Processing at Energies Between 300 keV and 25 MeV
能量在300keV和25MeV之间的电子束辐射处理的标准实施规程
2022-12-01
现行
ASTM ISO/ASTM51818-20
Standard Practice for Dosimetry in an Electron Beam Facility for Radiation Processing at Energies Between 80 and 300 keV
用于在能量在80和300keV之间的辐射处理的电子束设备中的剂量测定的标准做法
2019-04-01
现行
BS ISO/ASTM 51818-2020
Practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 k
能量在80和300K之间的辐射处理用电子束设施中剂量测定的实施规程
2020-07-06
现行
ISO/ASTM 51818-2020
Practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 keV
实验用于电子束设备中的剂量测定法 用于在80和300keV之间的辐射处理
2020-06-30
现行
BS ISO 15569-1998
Practice for dosimetry in an electron-beam facility for radiation processing at energies between 300 keV and 25 MeV
能量在300千电子伏和25兆电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
1999-08-15
现行
BS ISO 15573-1998
Practice for dosimetry in an electron-beam facility for radiation processing at energies between 80 keV and 300 keV
能量在80千电子伏和300千电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
1999-08-15
现行
ISO/ASTM 51649-2015
Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV
在300keV至25MeV之间的能量下进行辐射处理的电子束设备中的剂量测定法
2015-03-17
现行
BS 12/30273487 DC
BS ISO 51818. Practice for dosimetry in an electron beam facility for radiation processing at energies between 80 and 300 keV
BS ISO 51818 能量在80和300千电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
2012-10-30
现行
BS 04/30118691 DC
BS ISO ASTM 51649. Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV
BS ISO ASTM 51649 能量在300千电子伏和25兆电子伏之间的辐射处理用电子束设施中剂量测定的实施规程
2004-08-18