1.1
本指南涵盖了如何使用与金属加工和金属去除液的健康和安全相关的文件的信息。因此,本指南将为用户提供充分的背景信息,以有效使用第节中列出的文件
2.
. 本指南中引用的文件按适用于生产者、用户或所有人进行分组。
1.2
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.3
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
本指南的应用将为用户提供有关如何使用第节中列出的各种文件的信息
2.
与金属加工和金属去除液的健康和安全相关。
4.2
第节所列文件的用户
2.
可分为几类,如金属加工或金属去除液的生产商、这些生产商的原材料供应商、金属加工或金属去除液的用户以及其他相关方,如非政府组织。
4.3
虽然各方可能希望大致熟悉第节中列出的所有文件
2.
,生产者和用户可能都希望关注直接适用于他们的某些文件:
4.4
适用于生产商的文件:
4.4.1
E1687
测定金属加工液中原始基础油致癌潜力的试验方法:
4.4.1.1
试验方法
E1687
涵盖了基于
沙门氏菌
Ames等人的诱变试验。
7.
(另见Maron等人)。
8.
它可以作为一种筛选技术来检测金属加工油配方中使用的原始基础油中是否存在潜在的皮肤致癌物。使用本试验的人员应熟悉艾姆斯试验的进行,并熟悉石油产品的物理和化学特性。
4.4.1.2
金属加工液和金属去除液的生产商应确保在纯金属加工油和金属去除油的配方中使用的未净化基础油以及可溶性和半挥发性润滑油-
合成金属去除液具有可接受的诱变指数或诱变潜能指数。
4.4.2
E1302
水溶性金属去除液的急性动物毒性试验指南:
4.4.2.1
指导
E1302
定义了急性动物毒性试验,并规定了评估制造的水溶性金属去除液急性毒性的程序参考。
4.4.2.2
指南的应用
E1302
将提供有关水溶性金属去除液急性毒性的信息,并将协助用户评估该液的潜在健康危害,并制定适当的工作实践。
4.4.3
E3265
水溶性金属加工液起泡倾向评估指南:
4.4.3.1
指导
E3265
概述了发泡趋势评估协议及其适当使用。
4.4.3.2
试验方法
D3519
和
D3601
2013年撤销。虽然每种方法都有一些实用性,但两种方法都不能可靠地预测使用中的发泡趋势。自试验方法
D3519
和
D3601
首先采用了几种更具预测性的测试方案。然而,众所周知,没有任何单一的协议普遍适用于预测水溶性金属加工液(MWF)的发泡趋势。
4.4.3.3
没有公认的参考标准液(MWF或泡沫控制添加剂)。相反,重要的是在所有测试中包括相关参考样品。
4.4.3.4
指导
E3265
总结了泡沫形成理论,然后总结了常用的泡沫测试协议,包括搅拌器、摇动、空气喷雾和再循环测试。
4.4.3.5
对于每个协议,指南
E3265
解释测试概念、所需设备、测试过程总结、报告、协议变化、最合适的应用和优点,以及最不合适的应用和限制。
4.5
适用于用户的文件:
4.5.1
E1497
水溶性和直油金属去除液的选择和安全使用规程:
4.5.1.1
实践
E1497
阐述了金属去除液、添加剂和杀菌剂的安全使用指南。这包括产品选择、存储、分配和维护。
4.5.1.2
水溶性金属去除液通常在高稀释度下使用,稀释率差异很大。此外,还可能暴露于制造的未稀释金属去除液以及金属去除液添加剂和杀生物剂。
4.5.1.3
直馏油通常由经过严格溶剂精制或加氢处理的石油、合成油或其他动植物源油组成。直馏油在使用前不得用水稀释。添加剂通常包含在直馏油配方中。
4.5.2
E1972
在湿金属去除环境中最小化气溶胶影响的实施规程:
4.5.2.1
实践
E1972
阐述了在湿金属去除环境中最小化气溶胶影响的指南。
4.5.2.2
实践
E1972
结合了所有实用的方法和机制,以最大限度地减少气溶胶的产生,并控制湿金属去除环境中气溶胶的影响。
4.5.3
D7049
工作场所大气中金属去除液气溶胶的试验方法:
4.5.3.1
试验方法
D7049
介绍了在0.05 mg/m范围内测定总收集颗粒物和可提取质量金属去除液气溶胶浓度的程序
3.
至5毫克/米
3.
在工作场所环境中。
4.5.3.2
试验方法
D7049
描述了收集工人暴露信息的标准化方法,该方法可以与现有暴露数据库进行比较,使用的测试方法也更特定于金属去除液。
4.5.4
E2144页
工作场所大气中金属加工液气溶胶中内毒素的个人取样和分析实施规程:
4.5.4.1
实践
E2144页
涵盖工作场所空气中多分散金属去除液气溶胶中细菌内毒素浓度的个人采样和测定定量方法。
用户应具备微生物技术和内毒素检测的基本知识。
4.5.4.2
金属去除液气溶胶中的内毒素对吸入它们的工人有潜在的呼吸道危害。
4.5.4.3
实践用户
E2144页
可在工作场所空气中短期或全班获取金属去除液气溶胶中内毒素的个人暴露数据。
4.5.4.4
实践
E2144页
估计采样大气中的内毒素浓度。
4.5.4.5
实践
E2144页
寻求最小化实验室间差异,但不确保结果的一致性。
4.5.4.6
预计实践
E2144页
通过提供内毒素采样、提取和分析方法的基础,将有助于实验室间比较金属加工流体大气,特别是金属去除流体大气中的空气中内毒素数据。
4.5.5
E2169
水溶性金属加工液中使用的抗菌杀虫剂的选择实施规程:
4.5.5.1
实践
E2169
提供了选择用于水溶性金属加工液(MWF)的抗菌杀虫剂(杀微生物剂)的建议。它提供了有关监管要求的信息,以及技术因素,包括目标微生物、功效和化学兼容性。
4.5.5.2
实践
E2169
不是一个百科全书式的汇编,所有的概念和术语使用化学家,微生物学,毒理学,配方,植物工程师和监管事务专家参与抗菌农药的选择和应用。相反,它提供了对选择过程及其支持因素的一般理解。
4.5.6
E2657
水溶性金属加工液中内毒素浓度的测定实施规程:
4.5.6.1
实践
E2657
介绍了水溶性金属加工液(MWF)中革兰氏阴性细菌内毒素浓度采样和测定的定量方法。
4.5.6.2
实践用户
E2657
应熟悉MWF的处理。
4.5.6.3
实践
E2657
给出采样MWF的内毒素浓度估计值。
(1)
现场使用,实践
E2657
显示了多功能过滤器中革兰氏阴性细菌污染的变化。
(2)
实践
E2657
不能取代实践
E2144页
.
4.5.6.4
实践
E2657
寻求最小化实验室间差异,但不确保结果的一致性。
4.5.6.5
实践
E2657
旨在将MWF中的内毒素浓度与吸入内毒素的健康影响联系起来。
4.5.7
E2563
用平板计数法计数含水金属加工液中非结核分枝杆菌的试验方法:
4.5.7.1
试验方法
E2563
涵盖活的和可培养的快速生长分枝杆菌(RGM)或非结核的检测和计数
分枝杆菌
(NTM)在水性金属加工液(MWF)中,使用标准微生物培养方法,在存在高非分枝杆菌背景的情况下。
4.5.7.2
NTM,例如
免疫分枝杆菌
被认为是呼吸道疾病的病原体,
外源性过敏性静脉炎
(也称为
过敏性肺炎
; HP)。
4.5.7.3
活菌和可培养分枝杆菌密度的测量与分枝杆菌总数(包括活菌可培养(VC)、活菌非活菌)相结合-
可培养(VNC)和不可存活(NV)计数通常是建立两者之间任何可能关系的第一步
分枝杆菌
以及职业健康问题(例如,HP)。
4.5.7.4
试验方法
E2563
可用于调查研究,以表征金属加工液现场样品的可培养分枝杆菌种群密度。
4.5.7.5
试验方法
E2563
通过平板计数技术测定分枝杆菌存活率,也适用于建立金属加工液配方的分枝杆菌耐药性。
4.5.7.6
试验方法
E2563
可用于评估杀微生物剂对
分枝杆菌
在金属加工液中。
4.5.8
E2564年
通过直接显微镜计数(DMC)法对金属加工液中分枝杆菌计数的试验方法:
4.5.8.1
试验方法
E2564年
描述了一种直接显微镜计数法(DMC),用于计数金属加工液中的耐酸染色分枝杆菌种群。它可以用于检测分枝杆菌总数的水平,包括可培养和不可培养(可能死亡或濒死)的细菌细胞。本试验方法推荐用于所有水基金属加工液。
4.5.8.2
如中所述
4.5.7.1
,非结核分枝杆菌是本地MWF细菌群中的常见成员,被认为是HP的病原体。
4.5.8.3
试验方法
E2564年
使用抗酸染色法对抗酸杆菌总数进行定量评估,以选择性地从其他细菌中识别分枝杆菌,然后对已知区域的已知体积进行计数或直接显微镜计数。
4.5.8.4
尽管其他微生物,特别是放线菌也耐酸性染色,但由于其形态和大小,它们与分枝杆菌不同。非分枝杆菌、抗酸微生物比分枝杆菌大50到100倍。
4.5.8.5
试验方法
E2564年
提供关于分枝杆菌总数(可培养和不可培养的活菌和不活菌)的定量信息。结果以每毫升金属加工液样本中的分枝杆菌数量表示。
4.5.8.6
使用抗酸染色技术的DMC方法是一种半定量方法,具有较快的周转时间。
4.5.8.7
DMC方法也可用于现场调查研究,以表征金属加工液系统中总分枝杆菌密度在长时间内的变化。
4.5.8.8
DMC方法的灵敏度检测极限取决于所检查的MF和样品体积(直接或离心等)。
4.5.9
E2694
测量水溶性金属加工液中三磷酸腺苷的试验方法:
4.5.9.1
试验方法
E2694
提供了一种捕获、提取和量化与MWF中发现的微生物相关的三磷酸腺苷(ATP)含量的方案。
4.5.9.2
试验方法
E2694
测量样品中ATP的浓度。ATP是所有活细胞的组成部分,包括细菌和真菌。因此,ATP的存在是金属加工液中总微生物污染的指标。ATP与非生物来源的物质无关。
4.5.9.
3.
ATP测试提供快速测试结果,反映样本中的总生物负荷。因此,它将测试启动和数据采集之间的延迟从可培养菌落可见所需的36小时到48小时(或更长)减少到约5分钟。
4.5.9.4
虽然ATP数据通常与MWF中的培养数据共变,
9
影响ATP浓度的因素不同于影响可培养性的因素。
4.5.9.5
由于ATP存在于所有生物体中,因此试验方法
E2694
可作为第一个筛选,以确定是否需要额外的微生物测试。
4.5.9.6
虽然对于MWF体积生物负载和生物气溶胶浓度之间的确切关系没有共识,但人们普遍认为,体积流体生物负载越高,意味着生物气溶胶浓度越高。
4.5.10
E2693
在湿金属去除液环境中预防皮炎的实施规程:
4.5.10.1
实践
E2693
阐述了减少暴露在湿金属去除环境中引起的皮炎的指南。这种做法的范围不包括暴露于通过完整皮肤(皮肤途径)进入身体的化学品,这有可能造成其他毒性影响。
4.5.10.2
实践
E2693
结合了减少皮肤暴露于湿金属去除环境的方法和机制,并控制湿金属去除环境中可能引起皮炎的因素。
4.5.10.3
实践
E2693
重点关注员工通过接触和接触金属去除液(MRF)接触皮肤的情况。
4.6
适用于所有人的文件:
4.6.1
E2889
金属去除液环境中呼吸危害控制的实施规程:
4.6.1.1
实践
E2889
阐述了金属去除液环境中控制呼吸危害的指南。
4.6.1.2
实践
E2889
采用系统管理方法控制金属去除液环境中的呼吸危害。要素包括管理实践、产品选择、雾最小化方法、机床设计和维护、生物气溶胶控制、流体测试和维护、个人防护设备、职业暴露指南、气溶胶监测和测试方法、医疗监测和管理以及通信和培训。
4.6.1.3
实践
E2889
重点关注员工通过吸入金属去除液和相关气载制剂而暴露的情况。它不包括预防皮炎,这是实践的主题
E2693
.
4.6.2
金属去除液环境管理——金属去除液安全高效使用指南:
4.6.2.1
本指南收集了金属去除液系统管理的最佳实践,并提供了一种教育工具,帮助用户在工作场所控制MRF系统。
4.6.2.2
对于许多工业组织来说,专注于磁流变液系统的系统管理已被证明在控制湿金属去除/加工环境中的暴露方面是有效的。这些建议是从组织资源顾问成员公司的经验中提炼出来的,代表了最佳实践。
4.6.3
推荐标准的标准-金属加工液的职业暴露:
4.6.3.1
本标准文件回顾了与金属加工液和金属加工液气溶胶职业接触相关的不良健康影响的可用信息。
4.6.3.2
标准文件为新的职业安全和健康标准提供了科学依据,并包含对危害流行程度、安全和健康风险的存在以及控制方法的充分性等可用科学技术信息的批判性审查。
4.6.4
金属加工液–安全和健康最佳实践手册:
4.6.4.1
本文件审查了职业安全与健康管理局记录的最佳实践,包括工程和工作实践控制、制定金属加工液管理计划、制定接触监测计划、对接触员工进行医疗监测和培训。
4.6.4.2
本手册不是标准或法规,不产生新的法律义务。其性质是咨询性的,内容是信息性的,旨在通过适合每个工作场所的需求和资源的有效预防方案,帮助雇主为接触金属加工液的工人提供安全健康的工作场所。
1.1
This guide covers information on how to use documents related to health and safety of metalworking and metal removal fluids. As such, this guide will provide the user with sufficient background information to effectively use the documents listed in Section
2
. Documents referenced in this guide are grouped as applicable to producers, to users or to all.
1.2
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.3
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
Application of this guide will provide users with information on how to use the various documents listed in Section
2
related to health and safety of metalworking and metal removal fluids.
4.2
Users of the documents listed in Section
2
may fall into several categories, such as producers of metalworking or metal removal fluids, suppliers of raw materials to those producers, users of metalworking or metal removal fluids, and other interested parties such as non-governmental organizations.
4.3
While all parties may wish to be generally familiar with all the documents listed in Section
2
, producers and users may each want to focus on certain documents which are directly applicable to them:
4.4
Documents Applicable to Producers:
4.4.1
E1687
Test Method for Determining Carcinogenic Potential of Virgin Base Oils in Metalworking Fluids:
4.4.1.1
Test Method
E1687
covers a microbiological test procedure based upon the
Salmonella
mutagenesis assay of Ames et al.
7
(see also Maron et al.).
8
It can be used as a screening technique to detect the presence of potential dermal carcinogens in virgin base oils used in the formulation of metalworking oils. Persons who use this test should be well versed in the conduct of the Ames test and conversant with the physical and chemical properties of petroleum products.
4.4.1.2
Producers of metalworking fluids and metal removal fluids should assure themselves that virgin base oils used in the formulation of neat metalworking and metal removal oils and soluble and semi-synthetic metal removal fluids have an acceptable mutagenicity index or mutagenic potency index.
4.4.2
E1302
Guide for Acute Animal Toxicity Testing of Water-Miscible Metal Removal Fluids:
4.4.2.1
Guide
E1302
defines acute animal toxicity tests and sets forth references for procedures to assess the acute toxicity of water-miscible metal removal fluids as manufactured.
4.4.2.2
Application of Guide
E1302
will provide information on the acute toxicity of water-miscible metal removal fluids and will assist the user in evaluating the potential health hazards of the fluid and developing appropriate work practices.
4.4.3
E3265
Guide for Evaluating Water-Miscible Metalworking Fluid Foaming Tendency:
4.4.3.1
Guide
E3265
provides an overview of foaming tendency evaluation protocols and their appropriate use.
4.4.3.2
Test Methods
D3519
and
D3601
were withdrawn in 2013. Although each method had some utility, neither method reliably predicted in-use foaming tendency. Since Test Methods
D3519
and
D3601
were first adopted several more predictive test protocols have been developed. However, it is also common knowledge that no single protocol is universally suitable for predicting water-miscible metalworking fluid (MWF) foaming tendency.
4.4.3.3
There are no generally recognized reference standard fluids (either MWF or foam control additive). Instead, it is important to include a relevant reference sample in all testing.
4.4.3.4
Guide
E3265
summarizes foam forming theory then provides a summary of commonly used foaming test protocols, including blender, shake, air sparge, and recirculation tests.
4.4.3.5
For each protocol, Guide
E3265
explains the testing concept, apparatus needed, a summary of the test process, reporting, protocol variations, most appropriate applications and advantages, and least appropriate applications and limitations.
4.5
Documents Applicable to Users:
4.5.1
E1497
Practice for Selection and Safe Use of Water-Miscible and Straight Oil Metal Removal Fluids:
4.5.1.1
Practice
E1497
sets forth guidelines for the safe use of metal removal fluids, additives, and biocides. This includes product selection, storage, dispensing, and maintenance.
4.5.1.2
Water-miscible metal removal fluids are typically used at high dilution and dilution rates vary widely. Additionally, there is potential for exposure to undiluted metal removal fluid as manufactured, as well as metal removal fluid additives and biocides.
4.5.1.3
Straight oils generally consist of a severely solvent-refined or hydro-treated petroleum oil, a synthetic oil, or other oils of animal or vegetable origin. Straight oils are not intended to be diluted with water prior to use. Additives are often included in straight oil formulations.
4.5.2
E1972
Practice for Minimizing Effects of Aerosols in the Wet Metal Removal Environment:
4.5.2.1
Practice
E1972
sets forth guidelines for minimizing effects of aerosols in the wet metal removal environment.
4.5.2.2
Practice
E1972
incorporates all practical means and mechanisms to minimize aerosol generation and to control effects of aerosols in the wet metal removal environment.
4.5.3
D7049
Test Method for Metal Removal Fluid Aerosol in Workplace Atmospheres:
4.5.3.1
Test Method
D7049
covers a procedure for the determination of both total collected particulate matter and extractable mass metal removal fluid aerosol concentrations in a range from 0.05 mg/m
3
to 5 mg/m
3
in workplace atmospheres.
4.5.3.2
Test Method
D7049
describes a standardized means of collecting worker exposure information that can be compared to existing exposure databases, using a test method that is also more specific to metal removal fluids.
4.5.4
E2144
Practice for Personal Sampling and Analysis of Endotoxin in Metalworking Fluid Aerosols in Workplace Atmospheres:
4.5.4.1
Practice
E2144
covers quantitative methods for the personal sampling and determination of bacterial endotoxin concentrations in polydisperse metal removal fluid aerosols in workplace atmospheres. Users should have fundamental knowledge of microbiological techniques and endotoxin testing.
4.5.4.2
Endotoxins in metal removal fluid aerosols present potential respiratory hazards to workers who inhale them.
4.5.4.3
Users of Practice
E2144
may obtain personal exposure data of endotoxin in metal removal fluid aerosols, either on a short-term or full-shift basis in workplace atmospheres.
4.5.4.4
Practice
E2144
gives an estimate of the endotoxin concentration of the sampled atmosphere.
4.5.4.5
Practice
E2144
seeks to minimize interlaboratory variation, but does not ensure uniformity of results.
4.5.4.6
It is anticipated that Practice
E2144
will facilitate interlaboratory comparisons of airborne endotoxin data from metalworking fluid atmospheres, particularly metal removal fluid atmospheres, by providing a basis for endotoxin sampling, extraction, and analytical methods.
4.5.5
E2169
Practice for Selecting Antimicrobial Pesticides for Use in Water-Miscible Metalworking Fluids:
4.5.5.1
Practice
E2169
provides recommendations for selecting antimicrobial pesticides (microbiocides) for use in water-miscible metalworking fluids (MWF). It presents information regarding regulatory requirements, as well as technical factors including target microbes, efficacy, and chemical compatibility.
4.5.5.2
Practice
E2169
is not an encyclopedic compilation of all the concepts and terminology used by chemists, microbiologits, toxicologists, formulators, plant engineers, and regulatory affairs specialists involved in antimicrobial pesticide selection and application. Instead, it provides a general understanding of the selection process and its supporting considerations.
4.5.6
E2657
Practice for Determination of Endotoxin Concentration in Water-Miscible Metalworking Fluids:
4.5.6.1
Practice
E2657
covers quantitative methods for the sampling and determination of Gram-negative bacterial endotoxin concentrations in water-miscible metalworking fluids (MWF).
4.5.6.2
Users of Practice
E2657
should be familiar with the handling of MWF.
4.5.6.3
Practice
E2657
gives an estimate of the endotoxin concentration of the sampled MWF.
(1)
Used onsite, Practice
E2657
gives an indication of changes in Gram-negative bacterial contamination in the MWF.
(2)
Practice
E2657
does not replace Practice
E2144
.
4.5.6.4
Practice
E2657
seeks to minimize interlaboratory variation but does not ensure uniformity of results.
4.5.6.5
Practice
E2657
is intended to relate endotoxin concentration in MWF to health effects of inhaled endotoxin.
4.5.7
E2563
Test Method for Enumeration of Non-Tuberculosis Mycobacteria in Aqueous Metalworking Fluids by Plate Count Method:
4.5.7.1
Test Method
E2563
covers the detection and enumeration of viable and culturable rapidly growing Mycobacteria (RGM), or non-tuberculosis
Mycobacteria
(NTM) in aqueous metalworking fluids (MWF) in the presence of high non-mycobacterial background population using standard microbiological culture methods.
4.5.7.2
NTM such as
Mycobacterium immunogenum
have been implicated as causative agents of the respiratory disease,
extrinsic allergic aveolitis
(also known as
hypersensitivity pneumonitis
; HP).
4.5.7.3
The measurement of viable and culturable mycobacterial densities combined with the total mycobacterial counts (including viable culturable (VC), viable non-culturable (VNC), and non-viable (NV) counts) is usually the first step in establishing any possible relationship between
Mycobacteria
and occupational health concerns (for example, HP).
4.5.7.4
Test Method
E2563
can be employed in survey studies to characterize the viable culturable mycobacterial population densities of metal working fluid field samples.
4.5.7.5
Test Method
E2563
is also applicable for establishing the mycobacterial resistance of metalworking fluid formulations by determining mycobacterium survival by means of plate count technique.
4.5.7.6
Test Method
E2563
can be used to evaluate the relative efficacy of microbicides against
Mycobacteria
in metalworking fluids.
4.5.8
E2564
Test Method for Enumeration of Mycobacteria in Metalworking Fluids by Direct Microscopic Counting (DMC) Method:
4.5.8.1
Test Method
E2564
describes a direct microscopic counting method (DMC) for the enumeration of the acid-fast stained mycobacteria population in metalworking fluids. It can be used to detect levels of total mycobacteria population, including culturable as well as non-culturable (possibly dead or moribund) bacterial cells. This test method is recommended for all water-based metalworking fluids.
4.5.8.2
As noted in
4.5.7.1
, non-tuberculosis mycobacteria are common members of the indigenous MWF bacterial population that have been implicated as agents of HP.
4.5.8.3
Test Method
E2564
provides a quantitative assessment of the total numbers of acid-fast bacilli using acid-fast staining to selectively identify mycobacteria from other bacteria, followed by enumeration or direct microscopic counting of a known volume over a known area.
4.5.8.4
Although other microbes—particularly the Actinomycetes—also stain acid fast, they are differentiated from the mycobacteria because of their morphology and size. Non-mycobacteria, acid-fast microbes are 50 to 100 times larger than mycobacteria.
4.5.8.5
Test Method
E2564
provides quantitative information on the total (culturable and non-culturable viable, and non-viable) mycobacteria populations. The results are expressed quantitatively as mycobacteria per mL of metalworking fluid sample.
4.5.8.6
The DMC method using the acid-fast staining technique is a semi-quantitative method with a relatively fast turnaround time.
4.5.8.7
The DMC method can also be employed in field survey studies to characterize the changes in total mycobacteria densities of metalworking fluid systems over a long period of time.
4.5.8.8
The sensitivity detection limit of the DMC method depends on the MF and the sample volume (direct or centrifuged, etc.) examined.
4.5.9
E2694
Test Method for Measurement of Adenosine Triphosphate in Water-Miscible Metalworking Fluids:
4.5.9.1
Test Method
E2694
provides a protocol for capturing, extracting, and quantifying the adenosine triphosphate (ATP) content associated with microorganisms found in MWF.
4.5.9.2
Test Method
E2694
measures the concentration of ATP present in the sample. ATP is a constituent of all living cells, including bacteria and fungi. Consequently, the presence of ATP is an indicator of total microbial contamination in metalworking fluids. ATP is not associated with matter of non-biological origin.
4.5.9.3
The ATP test provides rapid test results that reflect the total bioburden in the sample. It thereby reduces the delay between test initiation and data capture, from the 36 h to 48 h (or longer) required for culturable colonies to become visible, to approximately 5 min.
4.5.9.4
Although ATP data generally covary with culture data in MWF,
9
different factors affect ATP concentration than those that affect culturability.
4.5.9.5
Because ATP is present in all living organisms, Test Method
E2694
can be used as a first-screen to determine whether additional microbiological testing is needed.
4.5.9.6
Although there is no consensus on the exact relationship between bulk MWF bioburdens and bioaerosol concentrations, it is generally recognized that higher bulk fluid bioburdens imply higher bioaerosol concentrations.
4.5.10
E2693
Practice for Prevention of Dermatitis in the Wet Metal Removal Fluid Environment:
4.5.10.1
Practice
E2693
sets forth guidelines for reducing dermatitis caused by exposure to the wet metal removal environment. The scope of this practice does not include exposure to chemicals that enter the body through intact skin (cutaneous route), which has the potential to cause other toxic effects.
4.5.10.2
Practice
E2693
incorporates means and mechanisms to reduce dermal exposure to the wet metal removal environment and to control factors in the wet metal removal environment that have the potential to cause dermatitis.
4.5.10.3
Practice
E2693
focuses on employee exposure to the skin via contact and exposure to metal removal fluid (MRF).
4.6
Documents Applicable to All:
4.6.1
E2889
Practice for Control of Respiratory Hazards in the Metal Removal Fluid Environment:
4.6.1.1
Practice
E2889
sets forth guidelines to control respiratory hazards in the metal removal fluid environment.
4.6.1.2
Practice
E2889
adopts a systems management approach to control of respiratory hazards in the metal removal fluid environment. Elements include management practices, product selection, methods for mist minimization, machine tool design and maintenance, bioaerosol control, fluid testing and maintenance, personal protective equipment, occupational exposure guidelines, aerosol monitoring and testing methods, medical monitoring and management, and communication and training.
4.6.1.3
Practice
E2889
focuses on employee exposure via inhalation of metal removal fluids and associated airborne agents. It does not include prevention of dermatitis, which is the subject of Practice
E2693
.
4.6.2
Management of the Metal Removal Fluid Environment – A Guide to the Safe and Efficient Use of Metal Removal Fluids:
4.6.2.1
This guide collects best practices in the management of metal removal fluid systems and provides an educational tool to assist users in taking control of the MRF systems in their workplaces.
4.6.2.2
For many industrial organizations, focusing on the systematic management of MRF systems has proven effective in controlling exposures in the wet metal removal/machining environment. The recommendations are distilled from the experiences of Organization Resources Counselors member companies and represent best practice.
4.6.3
Criteria for a Recommended Standard – Occupational Exposure to Metalworking Fluids:
4.6.3.1
This criteria document reviews available information about the adverse health effects associated with occupational exposure to metalworking fluids and metalworking fluid aerosols.
4.6.3.2
Criteria documents provide the scientific basis for new occupational safety and health standards and contain a critical review of the scientific and technical information available on the prevalence of hazards, the existence of safety and health risks, and the adequacy of control methods.
4.6.4
Metalworking Fluids – Safety and Health Best Practices Manual:
4.6.4.1
This document reviews best practices as documented by the Occupational Safety and Health Administration, including engineering and work practice controls, establishing a metalworking fluid management program, instituting an exposure monitoring program, medical monitoring of exposed employees, and training.
4.6.4.2
This manual is not a standard or regulation and creates no new legal obligations. It is advisory in nature, informational in content, and is intended to assist employers in providing a safe and healthful workplace for workers exposed to metalworking fluids through effective prevention programs adapted to the needs and resources of each place of employment.