首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM F3244-21
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Navigation: Defined Area 导航的标准试验方法:规定区域
发布日期: 2021-07-01
1.1 目的: 1.1.1 该测试方法的目的是评估自动、自动或自主无人地面车辆(A-UGV)穿越有限A-UGV间隙的定义空间的能力。本测试方法旨在供A-UGV制造商、安装人员和用户使用。该测试方法定义了一组代表用户应用和不同a-UGV类型的通用2D区域形状。 1.1.2 无人值守地面车辆应具备适用于无人值守地面车辆操作的特定导航能力。此类能力的两个示例包括A-UGV在定义车辆路径或避障的结构之间的移动。导航系统是导航系统的监控功能- UGV,提供车辆从一个地方到另一个地方的频繁A-UGV更新。无人值守地面车辆环境通常包括对无人值守地面车辆机动性的各种约束,例如边界和障碍。在该测试方法中,规定了应用约束的装置、损伤、程序、任务和指标,从而定义了确定无人值守地面车辆导航能力的标准测试方法。 1.1.3 该测试方法具有可扩展性,可以提供一系列维度来约束任务执行期间的无人值守地面车辆移动性。 1.1.4 无人值守地面车辆应能够以适当的精度和准确性处理多种开放和定义区域的复杂性,以执行特定任务。 1.1.5 所需的移动能力包括从起始位置到结束位置的预编程移动、自主移动或两者的组合。进一步的机动性要求可能包括:持续速度、车辆重新配置以通过定义的空间、有效载荷、A-UGV在受限体积内的移动、A-UGV在导航时避开障碍物、或其他车辆能力或其组合。该测试方法旨在评估候选a-UGV是否满足一组用户应用需求。 1.1.6 该测试方法用于评估使用操作员提供的命令和数据(例如,目标点位置、环境地图)以及从其自身传感器(例如,环境中障碍物的位置)获得的信息(而不是从另一个传感器向其提供的信息)操作的单个无人值守地面车辆的能力- UGV或车队控制器。未来可能会有一些标准来解决多个协同工作的无人值守地面传感器或机队的能力。 1.1.7 本试验方法不考虑在导航过程中获取或移除有效载荷的行为,例如捡起/放下托盘或连接/断开拖车。A-UGV可能有一个有效载荷作为其配置的一部分(见实践 F3327 )这将在测试期间保持不变。未来的标准可能会在导航期间解决这些类型的功能。 1.1.8 执行位置- 本试验方法应在能够完全实现仪器和环境试验条件的位置进行。 规定并记录环境条件(见实践 F3218 ). 1.1.9 预计将在F45委员会内开发额外的测试方法,以解决额外或高级移动能力需求,例如协调其通过设施移动的a-UGV车队。 1.2 单位- 以国际单位制表示的数值应视为标准。括号中给出的值不是精确到英寸-磅单位的数学转换。它们是近似等效物,用于指定材料尺寸或数量,以避免试验装置的过度制造成本,同时保持试验方法结果的重复性和再现性。 括号中给出的这些值仅供参考,不被视为标准值。 1.3 本标准并非旨在解决与其使用相关的所有安全问题(如有)。应遵循ANSI/ITSDF B56.5、ISO 3691-4:2020等安全标准或其他安全标准。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.4 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 无人值守地面车辆广泛应用于制造设施和仓库等领域。 图1 显示了三种示例A-UGV类型和测试装置尺寸,以测试用于不同车辆任务、类型、尺寸和能力的A-UGV。此类站点可以具有结构化和非结构化的已定义和未定义区域。候选A-UGV的测试结果应以具有统计意义的方式描述A-UGV在有或无损伤的情况下通过定义区域的能力。无论A-UGV是否能够偏离其路径,或使用当地环境的特征作为其导航方法的输入,或两者都使用,都不应导致不同的测试方法。 相反,无人值守地面车辆在给定环境中适应其导航方法的能力将客观地由其在测试方法中的性能决定。 5.2 规定了三种不同的测试方法仪器渲染方式:物理边界、虚拟边界和地板标记(见第节) 6. 有关仪器的详细信息)。规定了两种类型的损伤,可作为导航测试的一部分,用作定义区域:障碍物和通信损伤(见第节) 7. 了解更多详细信息)。选择的设备和损伤应适合A-UGV的应用和环境。 5.3 这些测试方法解决了A-UGV制造商和潜在A-UGV用户表示的A-UGV性能要求。这些测试方法捕获的性能数据表明了A-UGV的能力以及测试所代表的应用。 5.4 测试设备具有可扩展性,可以在定义的区域限制A-UGV的尺寸,以满足当前和先进的下一代制造和分销设施的运营。 5.5 标准装置被指定为易于制造,以便于A-UGV开发人员和用户进行自我评估,并为A-UGV开发人员、用户和执行A-UGV执行器、传感器和控制的潜在用户提供实践任务。 5.6 虽然测试方法是首先为无人值守地面车辆开发的,但它们也可能适用于移动机械手和其他类型的工业自动化移动设备,以及其他领域。
1.1 Purpose: 1.1.1 The purpose of this test method is to evaluate an automatic, automated, or autonomous-unmanned ground vehicle’s (A-UGV) capability of traversing through a defined space with limited A-UGV clearance. This test method is intended for use by A-UGV manufacturers, installers, and users. This test method defines a set of generic 2D area shapes representative of user applications and for different A-UGV types. 1.1.2 A-UGVs shall possess a certain set of navigation capabilities appropriate to A-UGV operations. Two examples of such capabilities include A-UGV movement between structures that define the vehicle path or obstacle avoidance. A navigation system is the monitoring and controlling functions of the A-UGV, providing frequent A-UGV updates of vehicle movement from one place to another. A-UGV environments often include various constraints to A-UGV mobility, such as boundaries and obstacles. In this test method, apparatuses, impairments, procedures, tasks, and metrics are specified that apply constraints and thereby, standard test methods for determining an A-UGV’s navigation capabilities are defined. 1.1.3 This test method is scalable to provide a range of dimensions to constrain the A-UGV mobility during task performance. 1.1.4 A-UGVs shall be able to handle many types of open and defined area complexities with appropriate precision and accuracy to perform a particular task. 1.1.5 The required mobility capabilities include either preprogrammed movement, autonomous movement, or a combination of both, from a start location to an end location. Further mobility requirements may include: sustained speeds, vehicle reconfiguration to pass through defined spaces, payload, A-UGV movement within constrained volumes, A-UGV avoidance of obstacles while navigating, or other vehicle capabilities, or combinations thereof. This test method is designed such that a candidate A-UGV can be evaluated as to whether it meets a set of user application requirements. 1.1.6 This test method is used to evaluate the capabilities of a single A-UGV operating with commands and data provided to it by an operator (for example, locations of goal points, map of the environment), as well as those derived from its own sensors (for example, locations of obstacles in the environment), as opposed to information provided to it from another A-UGV or fleet controller. There may be future standards that address the capabilities of multiple A-UGVs – or fleets – that work together. 1.1.7 This test method does not consider the act of acquiring or removing payloads, such as picking up/dropping off a pallet or connecting to/disconnecting from a trailer, during navigation. The A-UGV may have a payload as part of its configuration (see Practice F3327 ) that will be unchanged during the test. A future standard may address these types of capabilities during navigation. 1.1.8 Performing Location— This test method shall be performed in a location where the apparatus and environmental test conditions can be fully implemented. Environmental conditions are specified and recorded (see Practice F3218 ). 1.1.9 Additional test methods within Committee F45 are anticipated to be developed to address additional or advanced mobility capability requirements, such as a fleet of A-UGVs coordinating their movement through a facility. 1.2 Units— The values stated in SI units are to be regarded as the standard. The values given in parentheses are not precise mathematical conversions to inch-pound units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. Safety standards such as ANSI/ITSDF B56.5, ISO 3691-4:2020, or other safety standards should be followed. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 A-UGVs operate in a wide range of applications such as manufacturing facilities and warehouses. Fig. 1 shows three example A-UGV types and test apparatus sizes to test A-UGVs intended for different vehicle tasks, types, sizes, and capabilities. Such sites can have both defined and undefined areas that are structured and unstructured. The testing results of the candidate A-UGV shall describe, in a statistically significant way, the ability of the A-UGV to navigate through a defined area with or without impairments. Whether or not an A-UGV is able to deviate from its path, or uses features of the local environment as input to its navigation method or both, should not result in a different test method. Rather, the capabilities of the A-UGV to adapt its navigation method in a given environment will be objectively determined by its performance in the test method. 5.2 Three different manners in which a test method apparatus can be rendered are specified for use: physical boundaries, virtual boundaries, and floor markings (see Section 6 for apparatus specifics). Two types of impairments are specified that can be utilized as the defined area as part of a navigation test: obstacles and communication impairments (see Section 7 for more detail). The apparatuses and impairments chosen shall be appropriate to the application and environment in which the A-UGV will be used. 5.3 These test methods address A-UGV performance requirements expressed by A-UGV manufacturers and potential A-UGV users. The performance data captured by these test methods are indicative of the capabilities of the A-UGV and the application represented by the test. 5.4 The test apparatuses are scalable to constrain A-UGV sizes in defined areas to meet current and advanced next generation manufacturing and distribution facility operations. 5.5 The standard apparatuses are specified to be easily fabricated to facilitate self-evaluation by A-UGV developers and users and provide practice tasks for A-UGV developers, users, and potential users that exercise A-UGV actuators, sensors, and controls. 5.6 Although the test methods were developed first for A-UGVs, they may also be applicable to mobile manipulators and other types of industrial automated mobility equipment, as well as in other domains.
分类信息
关联关系
研制信息
归口单位: F45.02
相似标准/计划/法规
现行
ASTM E2282-23
Standard Guide for Defining the Test Result of a Test Method
试验方法试验结果定义的标准指南
2023-11-01
现行
ASA S3/SC1.100-2014/S12.100-2014(R2020)
American National Standard Methods to Define and Measure the Residual Sound in Protected Natural and Quiet Residential Areas
美国国家标准定义和测量受保护的自然和安静居住区中残余声的方法
2014-12-05
现行
ASTM D2347-00(2021)
Standard Test Method for Measuring Area of Leather Test Specimens
皮革试样面积测量的标准试验方法
2021-09-01
现行
GOST R 54117-2010
Глобальные навигационные спутниковые системы. Морские дифференциальные подсистемы. Навигационная аппаратура потребителей. Технические характеристики, методы и требуемые результаты испытаний
全球导航卫星系统 海上差分子系统 导航接收设备 性能标准 测试方法和要求的测试结果
现行
ASTM D3663-20
Standard Test Method for Surface Area of Catalysts and Catalyst Carriers
催化剂和催化剂载体表面积的标准试验方法
2020-10-01
现行
ASTM D6013-00(2018)
Standard Test Method for Determination of Area Stability of Leather to Laundering
确定皮革面料稳定性的标准测试方法
2018-11-01
现行
BS EN 61135-1994
Decca Navigator system:Receivers for ships. Minimum performance standards. Methods of testing and required test results
Decca导航系统:船只的接收器 最低性能标准 试验方法和要求的试验结果
1994-12-15
现行
BS EN 61108-2-1998
Global navigation satellite systems (GNSS)-Global navigation satellite systems (GLONASS). Receiver equipment. Performance standards, methods of testing and required test results
全球导航卫星系统(GNSS) 全球导航卫星系统(GLONASS) 接收设备 性能标准、测试方法和要求的测试结果
1998-10-15
现行
ASTM D8516-23
Standard Test Method for Quantification of Culturable Waterborne Bacteria Using a Defined Culture Medium Coated Plate
用规定的培养基包衣板定量测定可培养的水性细菌的标准试验方法
2023-07-01
现行
ASTM B263/B263M-14(2020)
Standard Test Method for Determination of Cross-Sectional Area of Stranded Conductors
用于确定绞合导体横截面积的标准测试方法
2020-01-01
现行
NB/SH/T 0571-2021
催化剂中沸石比表面积和微孔体积测定法
Standard test method for determining micropore volume and zeolite area of a catalyst
2021-11-16
现行
ASTM D3776/D3776M-20
Standard Test Methods for Mass Per Unit Area (Weight) of Fabric
织物单位面积(重量)质量标准试验方法
2020-07-01
现行
ASTM D5261-10(2024)
Standard Test Method for Measuring Mass per Unit Area of Geotextiles
用于测量土工织物单位面积质量的标准测试方法
2024-11-01
现行
ASTM D4365-19
Standard Test Method for Determining Micropore Volume and Zeolite Area of a Catalyst
用于测定催化剂的微孔体积和沸石面积的标准测试方法
2019-07-01
现行
IEC 61108-2-1998
Maritime navigation and radiocommunication equipment and systems - Global navigation satellite systems (GNSS) - Part 2: Global navigation satellite system (GLONASS) - Receiver equipment - Performance standards, methods of testing and required test results
海上导航和无线电通信设备与系统 - 全球导航卫星系统(gnss) - 第2部分:全球导航卫星系统(glonass) - 接收机设备 - 性能标准 测试方法和所需测试结果
1998-06-05
现行
ASTM C1069-09(2022)
Standard Test Method for Specific Surface Area of Alumina or Quartz by Nitrogen Adsorption
用氮吸附法测定氧化铝或石英比表面积的标准试验方法
2022-05-01
现行
ASTM D4620-02(2021)
Standard Test Method for Evaluating the Effective Surface Area of Zinc Oxide in Rubber
评估橡胶中氧化锌有效表面积的标准试验方法
2021-11-01
现行
ASTM E2109-01(2021)
Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings
测定热喷涂涂层中孔隙率面积百分比的标准试验方法
2021-09-01
现行
ASTM B922-22
Standard Test Method for Metal Powder Specific Surface Area by Physical Adsorption
用物理吸附法测定金属粉末比表面积的标准试验方法
2022-03-01
现行
ASTM C1274-12(2020)
Standard Test Method for Advanced Ceramic Specific Surface Area by Physical Adsorption
用物理吸附法测定高级陶瓷比表面积的标准试验方法
2020-04-01