This paper presents field-monitored data from two supermarkets where the impact of space humidity on refrigerating system energy use was evaluated. Direct digital control (DDC) systems were used at both stores to collect 15-minute monitored data. At Store A in Minneapolis, the DDC system was used to monitor system performance as well as to implement temperature-terminated control in place of time-terminated control on 16 refrigerated zones using hot gas defrost. At Store B in Indianapolis, the DDC system was used to quantify the performance trends for the single compressor rack system with electric defrost.The results at Store B showed that refrigerating system energy use decreases by nearly 10 kWh/day for each 1% drop in space relative humidity, or about 0.4% of average annual system energy use. This value includes the impact of reduced latent loads, the reduction in direct energy use and imposed load from reduced electric defrost heater operation, and the smaller imposed load from reduced anti-sweat heater energy use. The measured reductions agree well with the impact predicted using the calculation methods developed by Howell (1993b) in ASHRAE Research Project 596.At Store A, the measured data show that implementing temperature-terminated defrost reduced refrigerating system energy use by nearly 70 kWh/day over the winter period when the average space humidity was 22% RH. The savings from temperature-terminated defrost increase by 4 kWh/day per each 1% drop in relative humidity.At both stores, the same type of mechanical controls were used to duty cycle the anti-sweat heaters based on store dew point. Anti-sweat heater electricity use was observed to decrease by 4.6 kWh/day at Store B and 3.4 kWh/day at Store A for each 1% drop in relative humidity. At Store A, a more aggressive control scheme was implemented with the DDC system that reduced anti-sweat heater energy use by 7.8 kWh/ day per % RH. The more aggressive control approach was reported to properly control fogging and condensation on display case surfaces.The overall energy reduction factor at the two stores was 12 kWh/day per % RH at Store A and 15 kWh/day per % RH at Store B. With more aggressive anti-sweat heater control, reduction factors as high as 20 kWh/day per % RH appear to be possible.Units: I-P