首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2827/E2827M-20
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains 用交叉俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
发布日期: 2020-03-01
1.1 本测试方法适用于在复杂、非结构化且通常危险的环境中操作的远程地面机器人。它规定了测量机器人以交叉(不连续)纵摇/横摇坡道的形式穿越复杂地形的能力所需的设备、程序和性能指标。该测试方法是可用于评估整体系统能力的几个相关移动性测试之一。 1.2 机器人系统包括控制所有功能的远程操作员,因此通常需要车载摄像机和远程操作员显示器。鼓励使用辅助功能或自主行为来提高整个系统的有效性或效率。 1.3 不同的用户群体可以在该测试方法中为各种任务需求设置自己的可接受性能阈值。 1.4 执行位置- 本试验方法可在任何可实施规定装置和环境条件的地方进行。 1.5 单位- 本文件使用国际单位制(SI单位)和美国惯用单位(英制单位)。它们不是数学转换。相反,它们是每个单位制中的近似等价物,以便在不同国家使用现成的材料。这避免了过高的采购和制造成本。为了比较试验方法结果,每个单元系统中规定尺寸之间的差异无关紧要,因此每个单元系统在本试验方法中单独视为标准。 1.6 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 该测试方法是一整套相关测试方法的一部分,这些测试方法提供了机器人系统移动性和远程操作员熟练程度的可重复测量。这种交叉(不连续)纵摇/横滚坡道地形特别挑战机器人系统移动、悬架系统以保持牵引力、侧翻趋势、复杂地形中的自扶正(如有必要)、底盘形状变化(如有)和操作员的远程态势感知。因此,它可以用于表示适度的室外地形复杂度或受限区域内的室内碎片。 5.2 根据预期部署环境的典型障碍物间距,地形装置的总体尺寸可能会有所不同,以提供不同的约束。例如,具有围护墙的地形大小可以表示公共汽车、火车或飞机通道内可重复的复杂性;有走廊和门口的住宅;相对开放的停车场,车与车之间有空间;或无障碍地形。 5.3 测试设备成本低,易于制造,因此可以广泛复制。该程序也很简单。这简化了不同测试位置和日期之间的比较,以确定最佳系统和操作员。 5.4 评估- 该测试方法可在受控环境中用于测量基线能力。它还可以嵌入到操作训练场景中,以测量由于照明、天气、无线电通信、GPS精度等不受控制的变量而导致的退化。 5.5 采购- 该测试方法可用于确定系统中的固有能力权衡,做出明智的采购决策,并在验收测试期间验证性能。这使需求规范和用户期望与现有的能力限制保持一致。 5.6 培训- 该测试方法可用于将操作员培训作为可重复的实践任务或培训场景中的嵌入式任务。由此产生的远程操作员熟练程度测量可以跟踪随时间变化的易逝技能,以及跨团队、区域或国家平均水平的绩效比较。 5.7 创新- 该测试方法可用于激发技术创新,演示突破能力,并测量在整个任务序列中执行特定任务的系统的可靠性。组合或排序多种测试方法可以指导制造商实现执行基本任务所需的能力组合。
1.1 This test method is intended for remotely operated ground robots operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the capability of a robot to traverse complex terrains in the form of crossing (discontinuous) pitch/roll ramps. This test method is one of several related mobility tests that can be used to evaluate overall system capabilities. 1.2 The robotic system includes a remote operator in control of all functionality, so an onboard camera and remote operator display are typically required. Assistive features or autonomous behaviors that improve the effectiveness or efficiency of the overall system are encouraged. 1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements. 1.4 Performing Location— This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented. 1.5 Units— The International System of Units (SI Units) and U.S. Customary Units (Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. This avoids excessive purchasing and fabrication costs. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system mobility and remote operator proficiency. This crossing (discontinuous) pitch/roll ramp terrain specifically challenges robotic system locomotion, suspension systems to maintain traction, rollover tendencies, self-righting in complex terrain (if necessary), chassis shape variability (if available), and remote situational awareness by the operator. As such, it can be used to represent modest outdoor terrain complexity or indoor debris within confined areas. 5.2 The overall size of the terrain apparatus can vary to provide different constraints depending on the typical obstacle spacing of the intended deployment environment. For example, the terrain with containment walls can be sized to represent repeatable complexity within bus, train, or plane aisles; dwellings with hallways and doorways; relatively open parking lots with spaces between cars; or unobstructed terrains. 5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators. 5.4 Evaluation— This test method can be used in a controlled environment to measure baseline capabilities. It can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc. 5.5 Procurement— This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits. 5.6 Training— This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages. 5.7 Innovation— This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.
分类信息
关联关系
研制信息
归口单位: E54.09
相似标准/计划/法规
现行
ASTM E2828/E2828M-20
Standard Test Method for Evaluating Response Robot Mobility Using Symmetric Stepfields Terrains
用对称阶梯场地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2802/E2802M-21e1
Standard Test Method for Evaluating Response Robot Mobility Using Variable Hurdle Obstacles
用可变跨栏障碍物评价机器人机动性的标准试验方法
2021-03-01
现行
ASTM E2991/E2991M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Gravel Terrain
评估响应机器人移动性的标准测试方法:横移砾石地形
2017-09-01
现行
ASTM E2992/E2992M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Sand Terrain
评估反应机器人移动性的标准测试方法:横穿沙地形
2017-09-01
现行
ASTM E2826/E2826M-20
Standard Test Method for Evaluating Response Robot Mobility Using Continuous Pitch/Roll Ramp Terrains
使用连续俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2830-11(2020)
Standard Test Method for Evaluating the Mobility Capabilities of Emergency Response Robots Using Towing Tasks: Grasped Sleds
使用牵引任务评估应急机器人的移动能力的标准测试方法:抓住雪橇
2020-01-01
现行
ASTM E3426/E3426M-24
Standard Test Method for Evaluating Aerial Response Robot Endurance
评估空中反应机器人耐久性的标准试验方法
2024-02-01
现行
ASTM E2801-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Gaps
评估应急机器人功能的标准测试方法:移动性:限制区域障碍:差距
2020-01-01
现行
ASTM E2829-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Maneuvering Tasks: Sustained Speed
评估应急机器人功能的标准测试方法:移动性:机动任务:持续速度
2020-01-01
现行
ASTM E3380/E3380M-23
Standard Test Method for Evaluating Ground Response Robot Endurance Using Reproducible Terrains
使用可复制地形评估地面反应机器人耐久性的标准试验方法
2023-04-01
现行
ASTM E2803-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Inclined Planes
评估应急机器人功能的标准测试方法:移动性:密闭区域障碍物:倾斜飞机
2020-01-01
现行
ASTM E2804-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Stairs/Landings
评估应急机器人功能的标准测试方法:移动性:限制区域障碍物:楼梯/着陆
2020-01-01
现行
ASTM E2566-17a
Standard Test Method for Evaluating Response Robot Sensing: Visual Acuity
评估响应机器人感应的标准测试方法:视力
2017-09-01
现行
ASTM E2853/E2853M-22
Standard Test Method for Evaluating Ground Response Robot Capabilities: Search Tasks
评估地面反应机器人能力的标准试验方法:搜索任务
2022-05-01
现行
ASTM E3408/E3408M-23
Standard Test Method for Evaluating Ground Response Robot Capabilities: Dexterity: Linear Inspection
评估地面反应机器人能力的标准试验方法:灵活性:线性检验
2023-09-15
现行
ASTM E2854/E2854M-21
Standard Test Method for Evaluating Response Robot Radio Communications Line-of-Sight Range
评定机器人无线电通信视线范围的标准试验方法
2021-01-01
现行
ASTM E2855-12(2021)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Non-Line-of-Sight Range
评估应急机器人功能的标准测试方法:无线电通信:非视距范围
2021-01-01