首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM C1303/C1303M-23
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Predicting Long-Term Thermal Resistance of Closed-Cell Foam Insulation 预测闭孔泡沫绝缘材料长期热阻的标准试验方法
发布日期: 2023-11-01
1.1 本试验方法涵盖了一个程序,用于通过减少样品厚度以在受控的实验室条件下加速老化来预测未受磨损或可渗透表面的刚性充气闭孔泡沫绝缘材料的长期热阻(LTTR) ( 1- 5. ) 。 2. 注1: 参见术语, 3.2.1 ,对于单词的含义 变老 在本标准范围内。 1.2 刚性充气闭孔泡沫绝缘材料包括所有制造用于保留除空气以外的发泡剂的蜂窝塑料绝缘材料。 1.3 该试验方法仅限于未受磨损或表面可渗透的均质材料。该方法适用于各种刚性闭孔泡沫绝缘类型,包括但不限于:挤出聚苯乙烯、聚氨酯、聚异氰脲酸酯和酚醛树脂。 该试验方法不适用于表面不透气的刚性闭孔泡沫或刚性闭孔面包原料泡沫。 注2: 看见 注8 有关该试验方法适用于刚性闭孔小圆面包原料泡沫的更多细节。 1.4 本试验方法采用参考标准试验程序测量热阻。对试样进行定期测量,以观察老化的影响。厚度减小的样品(即薄片)用于缩短这些观察所需的时间。这些测量结果用于预测材料的长期热阻。 1.5 试验方法分为两部分。A部分中的规定方法在一致的基础上提供了长期热阻值,可用于各种目的,包括产品评估、规范或产品比较。 B部分中的研究方法提供了热导率、老化和产品厚度之间的一般关系。 1.5.1 要使用规定方法,必须知道生产日期,这通常涉及制造商的合作。 1.6 以国际单位制或英寸磅单位表示的数值应单独视为标准。每个系统中规定的值不一定是完全相等的;因此,为了确保符合标准,每个系统应独立使用,并且两个系统的值不得组合。 1.7 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.8 目录: 部分 范围 1. 参考文件 2. 术语 3. 试验方法总结 4. 意义和用途 5. A部分:规定方法 6. 适用性 6.1 资格要求 6.1.1 饰面渗透性 6.1.2 仪器 6.2 采样 6.3 日程 6.3.1 试样制备 6.4 球门 6.4.1 日程 6.4.2 复制试样集 6.4.3 试样提取 6.4.4 切片平面度 6.4.5 切片厚度 6.4.6 烟囱组成 6.4.7 储存条件 6.5 测试程序 6.6 热阻测量一览表 6.6.1 热阻测量 6.6.2 产品密度 6.6.3 计算 6.7 B部分:研究方法 7. 背景 7.1 TDSL装置 7.2 采样时间表 7.3 试样制备 7.4 储存条件 7.5 测试程序 7.6 计算 7.7 报告 8. 报告A部分,规定方法 8.1 B部分报告,研究方法 8.2 精度和偏差 9 关键词 10 强制性信息-资格 附件A1 试样制备 A1.1 同质性鉴定 A1.2 导热系数等效测试程序 A1.3 替代产品厚度鉴定 A1.4 计算示例 A1.5 喷射泡沫产品试样的强制性信息制备 附件A2 TDSL的影响 附录X1 标准的历史 附录X2 泡沫老化理论 附录X3 参考文献 1.9 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ===意义和用途====== 5.1 刚性充气闭孔泡沫绝缘包括所有依赖发泡剂(或气体)(而不是空气)来获得热阻值的蜂窝塑料绝缘。在制造时,泡沫的泡孔通常含有最高百分比的发泡剂和最低百分比的大气气体。随着时间的推移,这些气体的相对浓度主要由于扩散而变化。由于所得电池气体混合物的热导率增加,这导致泡沫的热阻普遍降低。这些现象通常被称为泡沫老化。 5.1.1 对于一些使用发泡剂气体生产的刚性充气闭孔泡沫绝缘产品,发泡剂气体会非常迅速地扩散到满- 厚度发泡制品,如发泡聚苯乙烯,无需加速老化过程。 5.1.2 物理气体扩散现象在三维空间中发生。该实践发展中使用的一维形式的扩散方程仅适用于平面几何形状,即具有平行面且厚度远小于宽度且远小于长度的试样。 注3: 请参阅 附录X3 以讨论通过薄片加速老化的理论。 注4: 对径向形式的隔热材料(如管道隔热材料)的老化进行了理论和实验评估。 ( 6. ) 然而,这些实践还没有发展到纳入测试标准的地步。 5.2 中描述的现象引起的热阻变化 5.1 通常发生在一段较长的时间内。需要在较短的时间内提供关于这些材料的热阻随时间变化的信息,以便就配方、生产以及与其他材料的比较做出决定。 5.3 规格 C578 , C591 , C1029 , C1126 和 C1289 在刚性闭孔泡沫上,从制造时起在23±1°C[73±2°F]下调节180±5天后或在60±1°C[140±2°F]下调节90天后测量热阻。这种调节可以用于比较目的,但不足以描述长期热阻。这一要求证明了这类产品中老化现象的重要性。 5.4 A部分的规定方法提供了- 用于各种目的的术语热阻值,包括产品评估、规范或产品比较。这些目的的一致性基础是由一系列特定的程序约束提供的,这些约束在B部分所述的研究方法中是不需要的。规定方法产生的值对应于五年使用寿命的热阻,与15年使用寿命内的平均热阻非常对应 ( 7. , 8. ) 。 5.4.1 建议参考 C1303 为了提供长期热阻的产品额定值,请指定 C1303 。 5.5 B部分中的研究方法提供了热导率、老化和产品厚度之间的关系。 B部分中给出的计算方法可用于预测任何特定时间点的电阻以及特定时间段内的平均电阻。 注5: 只有满足A部分的所有其他要求,才能从B部分的数据中得出A部分中产生的5年老化值。 5.6 该试验方法涉及与刚性闭孔塑料泡沫老化相关的三个独立因素。 6.5.6 试样制备-- 讨论了薄平面试样的制备技术,包括从“制造”产品中提取试样,以及试样厚度的测量。 5.6.2 热阻的测量-- 在预定时间进行的热阻测量是测试方法的组成部分。 5.6.3 数据解释-- 包括适当应用理论和技术以实现预期目标的程序。
1.1 This test method covers a procedure for predicting the long-term thermal resistance (LTTR) of unfaced or permeably faced rigid gas-filled closed-cell foam insulations by reducing the specimen thickness to accelerate aging under controlled laboratory conditions ( 1- 5 ) . 2 Note 1: See Terminology, 3.2.1 , for the meaning of the word aging within this standard. 1.2 Rigid gas-filled closed-cell foam insulation includes all cellular plastic insulations manufactured with the intent to retain a blowing agent other than air. 1.3 This test method is limited to unfaced or permeably faced, homogeneous materials. This method is applied to a wide range of rigid closed-cell foam insulation types, including but not limited to: extruded polystyrene, polyurethane, polyisocyanurate, and phenolic. This test method does not apply to impermeably faced rigid closed-cell foams or to rigid closed-cell bun stock foams. Note 2: See Note 8 for more details regarding the applicability of this test method to rigid closed-cell bun stock foams. 1.4 This test method utilizes referenced standard test procedures for measuring thermal resistance. Periodic measurements are performed on specimens to observe the effects of aging. Specimens of reduced thickness (that is, thin slices) are used to shorten the time required for these observations. The results of these measurements are used to predict the long-term thermal resistance of the material. 1.5 The test method is given in two parts. The Prescriptive Method in Part A provides long-term thermal resistance values on a consistent basis that can be used for a variety of purposes, including product evaluation, specifications, or product comparisons. The Research Method in part B provides a general relationship between thermal conductivity, age, and product thickness. 1.5.1 To use the Prescriptive Method, the date of manufacture must be known, which usually involves the cooperation of the manufacturer. 1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 Table of Contents: Section Scope 1 Reference Documents 2 Terminology 3 Summary of Test Method 4 Significance and Use 5 Part A: The Prescriptive Method 6 Applicability 6.1 Qualification Requirements 6.1.1 Facing Permeability 6.1.2 Apparatus 6.2 Sampling 6.3 Schedule 6.3.1 Specimen Preparation 6.4 Goal 6.4.1 Schedule 6.4.2 Replicate Test Specimen Sets 6.4.3 Specimen Extraction 6.4.4 Slice Flatness 6.4.5 Slice Thickness 6.4.6 Stack Composition 6.4.7 Storage Conditioning 6.5 Test Procedure 6.6 Thermal Resistance Measurement Schedule 6.6.1 Thermal Resistance Measurements 6.6.2 Product Density 6.6.3 Calculations 6.7 Part B: The Research Method 7 Background 7.1 TDSL Apparatus 7.2 Sampling Schedule 7.3 Specimen Preparation 7.4 Storage Conditioning 7.5 Test Procedure 7.6 Calculations 7.7 Reporting 8 Reporting for Part A, the Prescriptive Method 8.1 Reporting for Part B, the Research Method 8.2 Precision and Bias 9 Keywords 10 Mandatory Information – Qualification Annex A1 Specimen Preparation A1.1 Homogeneity Qualification A1.2 Thermal Conductivity Equivalence Test Procedure A1.3 Alternate Product Thickness Qualification A1.4 Example Calculations A1.5 Mandatory Information-Preparation of Test Specimens for Spray-Foam Products Annex A2 Effect Of TDSL Appendix X1 History of the Standard Appendix X2 Theory of Foam Aging Appendix X3 References 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Rigid gas-filled closed-cell foam insulations include all cellular plastic insulations which rely on a blowing agent (or gas), other than air, for thermal resistance values. At the time of manufacture, the cells of the foam usually contain their highest percentage of blowing agent and the lowest percentage of atmospheric gases. As time passes, the relative concentrations of these gases change due primarily to diffusion. This results in a general reduction of the thermal resistance of the foam due to an increase in the thermal conductivity of the resultant cell gas mixture. These phenomena are typically referred to as foam aging. 5.1.1 For some rigid gas-filled closed-cell foam insulation products produced using blowing agent gases that diffuse very rapidly out of the full-thickness foam product, such as expanded polystyrene, there is no need to accelerate the aging process. 5.1.2 Physical gas diffusion phenomena occur in three dimensions. The one-dimensional form of the diffusion equations used in the development of this practice are valid only for planar geometries, that is, for specimens that have parallel faces and where the thickness is much smaller than the width and much smaller than the length. Note 3: Please see Appendix X3 for a discussion of the theory of accelerated aging via thin slicing. Note 4: Theoretical and experimental evaluations of the aging of insulation in radial forms, such as pipe insulation, have been made. ( 6 ) However, these practices have not evolved to the point of inclusion in the test standard. 5.2 The change in thermal resistance due to the phenomena described in 5.1 usually occurs over an extended period of time. Information regarding changes in the thermal resistance of these materials as a function of time is required in a shorter period of time so that decisions regarding formulations, production, and comparisons with other materials can be made. 5.3 Specifications C578 , C591 , C1029 , C1126 and C1289 on rigid closed-cell foams measure thermal resistance after conditioning at 23 ± 1°C [73 ± 2°F] for 180 ± 5 days from the time of manufacture or at 60 ± 1°C [140 ± 2°F] for 90 days. This conditioning can be used for comparative purposes, but is not sufficient to describe long-term thermal resistance. This requirement demonstrates the importance of the aging phenomena within this class of products. 5.4 The Prescriptive Method in Part A provides long-term thermal resistance values on a consistent basis for a variety of purposes, including product evaluation, specifications, or product comparisons. The consistent basis for these purposes is provided by a series of specific procedural constraints, which are not required in the Research Method described in Part B. The values produced by the Prescriptive Method correspond to the thermal resistance at an age of five years, which corresponds closely to the average thermal resistance over a 15-year service life ( 7 , 8 ) . 5.4.1 It is recommended that any material standard that refers to C1303 to provide a product rating for long-term thermal resistance specify the Part A Test Method of C1303 . 5.5 The Research Method in Part B provides a relationship between thermal conductivity, age, and product thickness. The calculation methods given in Part B can be used to predict the resistance at any specific point in time as well as the average resistance over a specific time period. Note 5: The 5-year aged values produced in Part A can be derived from the Part B data only if all other Part A requirements are met. 5.6 This test method addresses three separate elements relating to the aging of rigid closed-cell plastic foams. 5.6.1 Specimen Preparation— Techniques for the preparation of thin flat specimens, including their extraction from the “as manufactured” product, and the measurement of specimen thickness are discussed. 5.6.2 Measurement of the Thermal Resistance— Thermal resistance measurements, taken at scheduled times, are an integral part of the test method. 5.6.3 Interpretation of Data— Procedures are included to properly apply the theory and techniques to achieve the desired goals.
分类信息
关联关系
研制信息
归口单位: C16.30
相似标准/计划/法规