首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 AWWA ACE54273
到馆提醒
收藏跟踪
购买正版
Macromolecular Adsorption by Activated Carbons and Carbon Fibers 活性炭和碳纤维对大分子的吸附
发布日期: 2001-06-01
溶解、胶体或颗粒形式的天然有机物质(NOMs)在地表水和地下水中普遍存在。溶解和胶体形式(即DOM,通过0.45微米过滤器的成分)是NOM在水处理和供水方面最有问题和最不受欢迎的部分。使用常规处理工艺无法完全去除水中的DOMs。它们可以结合或复合合成有机化学品(SOC)和/或有毒金属,并通过处理设施和分配系统携带它们。DOMs可以作为分配系统中细菌生长的基质,并构成水处理过程中形成的消毒副产物(DBPs)的主要前体。 美国环境保护局(USEPA)正计划对DBP实施更严格的标准,因为DBP对公众健康的潜在风险。因此,颗粒活性炭(GAC)吸附已被指定为去除DOM的最佳可用技术。在目前的大多数实际应用中,GAC固定床吸附器被设计用于去除水中溶解的污染物,如SOC。研究发现,水中DOMs的存在会显著降低GAC吸附器对目标SOC的性能和容量。虽然要同时达到多个污染物的去除目标,很难理解它们之间的相互作用,但要同时达到多个污染物的去除目标,就很难同时达到多个污染物的去除目标。 本研究通过对一种煤基活性炭和一种木基活性炭进行表面改性,制备了11种活性炭,研究了碳表面化学对优先污染物和DOM吸附的作用。总的来说,结果表明,活性炭对DOM的容量是两个主要因素的函数:碳表面酸度与DOM化学成分;碳孔径与DOM分子大小的关系。GAC表面和DOM结构内的强酸性官能团(如羧基)之间的排斥力似乎降低了吸附容量。我们的结果表明,通过选择表面酸度最小、孔径较大的活性炭,可以最大限度地去除DOM。由于我们研究了两种不同的碳,我们的研究结果表明,碳孔和DOM分子大小之间的关系对于GACs去除水中的DOMs非常重要,因此本研究的目的是系统地研究物理相互作用在不同碳材料吸附大分子过程中的作用。 包括表格,数字。
Naturally-occurring organic materials (NOMs) in dissolved, colloidal or particulate forms are ubiquitous in surface and groundwaters. The dissolved and colloidal forms (i.e., DOMs, those constituents passing a 0.45 micron filter) are the most problematic and undesirable fractions of NOM with regard to water treatment and supply. DOMs cannot be completelyremoved from water using conventional treatment processes. They can bind or complex synthetic organic chemicals (SOCs) and/or toxic metals and carry them through treatment facilities and distribution systems. DOMs can serve as substrates for bacterial growth in distribution systems and constitute the major precursors of disinfection byproducts (DBPs) formed during water treatment. The United States Environmental Protection Agency (USEPA) is planning to impose more stringent standards on DBPs because of their potential risk to public health. As a result, granular activated carbon (GAC) adsorption has been designated as a best available technology for DOM removal. In most current practical applications, GAC fixed-bed adsorbers are designed to remove dissolved pollutants, such as SOCs, from water. The presence of DOMs in water has been found to significantly reduce the performance and capacity of GAC adsorbers for target SOCs. Although meeting multiple objectives simultaneously in a single treatment process may be difficult, understanding the interactions between DOMs and GAC is essential to optimize their removal from water, to minimize their impact on the removal of the target pollutants, orboth. This study investigated the role of carbon surface chemistry on the adsorption of priority pollutants and DOMs using eleven GACs prepared by modifying the surfaces of one coal- and one wood-based GAC. Overall, the results indicated that the capacity of a GAC for a DOM is a function of two major factors: carbon surface acidity vs. DOM chemical composition; and, carbon pore size vs. DOM molecular size. Repulsive forces between strongly acidic functionalities (such as carboxylic groups) on the GAC surface and within the DOM structure appear to reduce adsorption capacity. Our results indicated that DOM removal can be maximized by selecting GACs with minimal surface acidity and large pore widths. Since we worked with two different carbons and our findings indicate that the relationship between carbon pore and DOM molecular sizes is important for the removal of DOMs from water by GACs, the objective of this research was to examine systematically the role of physical interactions during the adsorption of macromolecules by different carbon materials. Includes table, figures.
分类信息
发布单位或类别: 美国-美国给水工程协会
关联关系
研制信息
相似标准/计划/法规
现行
AWWA WQTC71427
Comparing Adsorption of Organic Contaminants by Carbon Nanotubes, Activated Carbons, and Activated Carbon Fiber
碳纳米管、活性炭和活性炭纤维对有机污染物吸附的比较
2009-11-01
现行
AWWA ACE93133
Adsorption of Atrazine by Powdered Activated Carbon
粉末活性炭吸附阿特拉津的研究
1993-01-01
现行
JB/T 10193-2010
活性炭吸附罐 技术条件
Active carbon adsorption column-Specification
2010-02-11
现行
AWWA QTC98377
Adsorption of Organics Onto Activated Carbon Cloths
活性炭布对有机物的吸附
1998-01-01
现行
AWWA WQTC55035
Full-Scale Adsorption of HAA5 by Activated Carbon
活性炭对HAA5的全尺寸吸附
2001-01-01
现行
JB/T 13172-2017
活性炭吸附脱硫脱硝技术装备
Desulfurization and denitration equipment of activated carbon adsorption
2017-04-12
现行
GB/T 7701.1-2008
煤质颗粒活性炭 气相用煤质颗粒活性炭
Granular activated carbon from coal - Granular activated carbon from coal for gas adsorption
2008-11-20
现行
AWWA JAW6264
Journal AWWA - Activated Carbon Adsorption of Humic Substances
AWWA期刊-腐殖物质的活性炭吸附
1981-08-01
现行
AWWA JAW6260
Journal AWWA - Chemical Pretreatment for Activated-Carbon Adsorption
AWWA期刊-活性炭吸附的化学预处理
1981-08-01
现行
GB/T 32992-2016
Determination of gold adsorption capacity and rate of activated carbon
2016-10-13
现行
GB/T 32992-2016e
活性炭吸附金容量及速率的测定
Determination of gold adsorption capacity and rate of activated carbon
2016-10-13
现行
LY/T 1971-2011
变压吸附精制氢气用活性炭
Activated carbon for hydrogen purification by pressure swing adsorption
2011-06-10
现行
GOST 33588-2015
Уголь активированный. Стандартный метод определения адсорбционной способности
活性炭 测定吸附能力的标准方法
2015-10-27
现行
GB/T 32992-2016
活性炭吸附金容量及速率的测定
Determination of gold adsorption capacity and rate of activated carbon
2016-10-13
现行
AWWA ACE99458
Adsorption of S-Triazine Herbicides in Natural Water by Activated Carbon
活性炭吸附天然水中S-三嗪类除草剂的研究
1999-01-01
现行
ASTM D5160-95(2019)
Standard Guide for Gas-Phase Adsorption Testing of Activated Carbon
活性炭气相吸附试验标准指南
2019-09-01
现行
GB/T 35815-2018
木质活性炭试验方法 甲苯吸附率的测定
Test methods of wooden activated carbon—Determination of toluene adsorption
2018-02-06
现行
GB/T 12496.12-1999
木质活性炭试验方法 苯酚吸附值的测定
Test methods of wooden activated carbon--Determination of phenol adsorption
1999-11-10
现行
GB/T 35565-2017
木质活性炭试验方法 甲醛吸附率的测定
Test methods of wooden activated carbon—Determination of formaldehyde adsorption
2017-12-29
现行
GOST 33586-2015
Уголь активированный. Стандартный метод испытаний на адсорбцию из газовой фазы
活性炭 气相吸附试验的标准方法
2015-10-27