Standard Practice for Determination of Thermal Resistance of Pneumatically Installed Loose-Fill Building Insulation (Behind Netting) for Enclosed Applications of the Building Thermal Envelope
建筑物热包层封闭应用用气动安装的松散填充建筑物绝缘材料(网后)的热阻测定的标准实施规程
1.1
本规程提供了一份实验室指南,用于确定在平均温度介于 –10和35°C(14至95°F)之间。
1.2
本规程适用于各种松散填充隔热产品,包括但不限于纤维玻璃、岩棉/矿渣棉或纤维素纤维材料以及任何其他可气动安装的隔热材料。它不适用于安装后通过化学反应或应用本规范中所述样品制备中未使用的粘合剂、粘合剂或其他材料而改变其特性的产品,也不考虑结构、容器、饰面或空气膜的影响。
1.3
由于这种做法是为可重复的产品比较而设计的,因此它测量了预处理到相对干燥状态的绝缘材料的热阻。
通过吸水来考虑吸湿隔热材料热性能的变化超出了本规范的范围。
1.4
本规程中概述的样品制备技术不包括用于开放应用和不用于喷涂应用的松散填充材料的特性。
1.5
以国际单位制表示的数值应视为标准。括号中给出的值仅供参考。
1.6
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.7
本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。
====意义和用途======
4.1
热阻,
R
,用于描述其热性能。
4.2
绝缘材料的热阻与绝缘材料的密度和厚度有关。希望获得与产品最终用途相关的厚度和密度下的热阻测试数据。
4.3
在正常使用中,这些产品的厚度范围从小于100毫米(4英寸)到大于150毫米(6英寸)。安装密度取决于产品类型、安装厚度、使用的安装设备、安装技术和绝缘空间的几何形状。
4.4
松散填充绝缘使用制造商选择的密度提供覆盖信息,以表示产品安装密度。通常,有必要了解产品在代表性密度下的热性能。
4.5
当适用的规范或规范没有规定用于比较的标称热阻水平时,建议使用Rsi(公制) = 2.
65mF/Btu])标记密度和厚度。
4.6
如果覆盖范围图中没有用于测试目的的密度,则应使用适用的规范和规范来确定测试密度,或者,如果不适用,则应通过请求机构和测试组织之间的协议来确定。
4.7
通常,这些材料的薄截面是不均匀的。因此,如果结果要一致且典型使用,则测试厚度必须大于或等于产品的代表厚度。
注1:
代表性厚度是针对每种产品的,并通过运行一系列测试来确定,在这些测试中密度保持不变,但厚度增加。代表性厚度在这里被定义为其上面不超过2 % 产品电阻率的变化。代表性厚度是产品吹制密度的函数。通常,随着密度的降低,代表性厚度增加。
幸运的是,大多数产品的设计都是在较小的密度范围内吹制的。对于大多数产品来说,这个有限的范围产生了75至150mm(3至6英寸)之间的代表性厚度范围。为了简化这种做法的过程
1859年
试验被认为是87.5毫米(3
1.
/
2.
中)。该产品的所有热测试都是在大于或等于代表厚度的厚度下进行的。
4.7.1
对于这种做法,最小试验厚度应为87.5 mm(3
1.
/
2.
in..)。如果试验代表较小厚度的安装,则应使用安装厚度。
4.8
出于本规程的目的,可以根据在最小测试厚度下对产品进行测试获得的热阻率来估计任何厚度下的热阻(参见
4.7.1
)并且以所提出的厚度所期望的密度。
4.9
原则上,任何测定热阻的标准方法都适用于松散-
填充产品。其中包括测试方法
1977年
,
第518页
,
114年
和
363年
.本规程是根据试验方法制定的
第518页
试样尺寸和几何形状。因此,试验方法
第518页
是优选的。试验方法
1977年
,
114年
和
363年
是可以接受的,但可以改变样品尺寸和几何形状。
4.10
低密度绝缘材料的热阻取决于热流的方向。除非另有规定,否则应在最大热流条件下进行试验,即热流向上的水平试样。
4.11
试样的制备方式应符合预期的安装程序。网后气动安装的产品应使用制造商的安装说明和规定的网进行气动应用(吹制)。
1.1
This practice presents a laboratory guide to determine the thermal resistance of pneumatically installed loose-fill building insulations for enclosed applications of the building thermal envelope behind netting at mean temperatures between –10 and 35°C (14 to 95°F).
1.2
This practice applies to a wide variety of loose-fill thermal insulation products including but not limited to fibrous glass, rock/slag wool, or cellulosic fiber materials and any other insulation material that can be installed pneumatically. It does not apply to products that change their character after installation either by chemical reaction or the application of binders, adhesives or other materials that are not used in the sample preparation described in this practice, nor does it consider the effects of structures, containments, facings, or air films.
1.3
Since this practice is designed for reproducible product comparison, it measures the thermal resistance of an insulation material which has been preconditioned to a relatively dry state. Consideration of changes of thermal performance of a hygroscopic insulation by sorption of water is beyond the scope of this practice.
1.4
The sample preparation techniques outlined in this practice do not cover the characterization of loose-fill materials intended for open applications and not intended for spray-applied applications.
1.5
The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.6
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
The thermal resistance,
R
, of an insulation is used to describe its thermal performance.
4.2
The thermal resistance of an insulation is related to the density and thickness of the insulation. It is desirable to obtain test data on thermal resistances at thicknesses and densities related to the end uses of the product.
4.3
In normal use, the thickness of these products range from less than 100 mm (4 in.) to greater than 150 mm (6 in.). Installed densities depend upon the product type, the installed thickness, the installation equipment used, the installation techniques, and the geometry of the insulated space.
4.4
Loose-fill insulations provide coverage information using densities selected by manufacturers to represent the product installed densities. Generally, it is necessary to know the product thermal performance at a representative density.
4.5
When applicable specifications or codes do not specify the nominal thermal resistance level to be used for comparison purposes, a recommended practice is to use the Rsi (metric) = 2.65 m F/Btu]) label density and thickness for that measurement.
4.6
If the density for test purposes is not available from the coverage chart, a test density shall be established by use of applicable specifications and codes or, if none apply, agreement between the requesting body and the testing organization.
4.7
Generally, thin sections of these materials are not uniform. Thus, the test thickness must be greater than or equal to the product’s representative thickness if the results are to be consistent and typical of use.
Note 1:
The representative thickness is specific for each product and is determined by running a series of tests in which the density is held constant but the thickness is increased. The representative thickness is defined here as that thickness above which there is no more than a 2 % change in the resistivity of the product. The representative thickness is a function of product blown density. In general, as the density decreases, the representative thickness increases. Fortunately, most products are designed to be blown over a small range of densities. This limited range yields a range of representative thicknesses between 75 to 150 mm (3 to 6 in.) for most products. To simplify the process for this practice, the representative thickness for the
C1859
tests is considered 87.5 mm (3
1
/
2
in). All thermal testing on this product is conducted at a thickness that is greater or equal to the representative thickness.
4.7.1
For this practice, the minimum test thickness shall be 87.5 mm (3
1
/
2
in.). If the test is to represent an installation at a lesser thickness, the installed thickness shall be used.
4.8
For purposes of this practice, it is acceptable to estimate the thermal resistance at any thickness from the thermal resistivity obtained from tests on the product at the minimum test thickness (see
4.7.1
) and at the density expected for the proposed thickness.
4.9
In principle, any of the standard methods for the determination of thermal resistance are suitable for loose-fill products. These include Test Methods
C177
,
C518
,
C1114
, and
C1363
. This practice was developed in relationship to Test Method
C518
specimen size and geometry. For this reason, Test Method
C518
is preferred. Test Methods
C177
,
C1114
, and
C1363
are acceptable but changes to specimen size and geometry are possible.
4.10
The thermal resistance of low-density insulations depend upon the direction of heat flow. Unless otherwise specified, tests shall be performed for the maximum heat flow condition, that is, a horizontal specimen with heat flow-up.
4.11
Specimens shall be prepared in a manner consistent with the intended installation procedure. Products for pneumatic installation behind netting shall be pneumatically applied (blown) using the manufacturer’s installation instructions and netting specified.