首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E2804-11(2020)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Stairs/Landings 评估应急机器人功能的标准测试方法:移动性:限制区域障碍物:楼梯/着陆
发布日期: 2020-01-01
1.1 目的: 1.1.1 本试验方法的目的是定量评估遥控地面机器人的(见术语 E2521 )在受限区域通过楼梯平台的能力。 1.1.2 机器人应具备一定的移动能力,包括通过障碍物,以适应紧急响应等关键操作。带楼梯平台的楼梯是一种存在于应急响应和其他环境中的障碍物。这些环境通常会在不同程度上限制机器人的移动。本测试方法规定了用于标准化该测试的仪器、程序和指标。 1.1.3 测试装置具有可扩展性,可提供一系列横向尺寸,以约束机器人在任务执行期间的移动。 图1 显示了用于测试不同应急响应场景的机器人的三种设备尺寸。 图1 移动性:受限区域障碍物:楼梯/平台装置 1.1.4 应急地面机器人应能够处理多种障碍物和复杂地形。所需的移动能力包括穿越缝隙、障碍、楼梯、斜坡、各种地板表面或地形以及受限通道。然而,额外的机动性要求包括持续速度和牵引能力。需要标准测试方法来评估候选机器人是否满足这些要求。 1.1.5 关于机器人的ASTM任务组E54.08.01规定了一个移动性测试套件,该套件由一组用于评估这些移动性要求的测试方法组成。该受限区域楼梯/平台测试方法是移动性测试套件的一部分。与测试方法相关的设备以可重复的方式挑战特定的机器人能力,以便于比较不同的机器人模型以及类似机器人模型的特定配置。 1.1.6 移动性测试套件量化了用于应急响应应用的地面机器人所需的基本移动性能力。因此,本标准的用户可以根据其特定的性能要求使用整个套件或子集。用户还可以根据其特定的性能要求,对测试方法中的特定测试方法或特定指标进行不同的加权。测试结果应共同代表应急响应地面机器人的整体移动性能。这些性能数据可用于指导用于应急响应应用的机器人的采购规范和验收测试。 注1: 预计将开发套件中的其他测试方法,以解决额外或高级机器人移动能力需求,包括新确定的需求,甚至是新的应用领域。 1.2 执行位置- 本试验方法应在试验实验室或实施规定仪器和环境条件的现场进行。 1.3 以国际单位制表示的数值应视为标准。括号中给出的值不是精确到英寸-磅单位的数学转换。它们是近似等效物,用于指定材料尺寸或数量,以避免试验装置的过度制造成本,同时保持试验方法结果的重复性和再现性。括号中给出的这些值仅供参考,不被视为标准值。 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。 本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 在应急响应操作中使用机器人的主要目的是提高在危险或无法进入的环境中操作的应急响应人员的安全性和有效性。候选机器人的测试结果应以具有统计意义的方式描述机器人能够通过各种类型障碍物(包括指定障碍物)的可靠性,从而为应急响应者提供足够高的置信度,以确定机器人的适用性。 5.2 该测试方法解决了应急响应人员和其他相关组织代表表示的机器人性能要求。该测试方法中捕获的性能数据表明了测试机器人的能力。根据国家应对框架中规定的“各级政府有责任制定详细、稳健的所有危害应对计划”的指导方针,提供了一份经过成功测试的机器人名册,以及相关的性能数据,以指导应急响应人员的采购和部署决策。 5.3 测试装置具有可扩展性,可在与应急响应操作相关的受限区域内,限制机器人在任务执行期间的可操作性,适用于各种尺寸的机器人。 该装置的变体为预期在杂乱的城市街道、停车场和建筑大厅等环境周围工作的机器人提供了2.4米(8英尺)的最小横向间隙;预期在大型建筑物、楼梯间和城市人行道等环境中或周围操作的机器人的最小横向间隙为1.2米(4英尺);预期在住宅和工作空间、公共汽车和飞机以及半坍塌结构等环境中运行的机器人的最小横向间隙为0.6米(2英尺);最小横向间隙小于0.6米(2英尺),最小垂直间隙可在0.6米(2英尺)至10厘米(4英寸)之间调节,用于预期通过马裤部署的机器人,并在坍塌结构中的亚人体尺寸受限空间内操作。 5.4 标准装置易于制造,以便于机器人开发人员进行自我评估,并为应急响应人员提供练习任务,这些应急响应人员练习机器人执行器、传感器和操作员界面。标准仪器也可用于支持操作员培训和建立操作员熟练程度。 5.5 虽然该测试方法是首先为应急响应机器人开发的,但它可能适用于其他操作领域。
1.1 Purpose: 1.1.1 The purpose of this test method is to quantitatively evaluate a teleoperated ground robot’s (see Terminology E2521 ) capability of traversing stairs with landings in confined areas. 1.1.2 Robots shall possess a certain set of mobility capabilities, including negotiating obstacles, to suit critical operations such as emergency responses. Stairs with landings are a type of obstacle that exists in emergency response and other environments. These environments often pose constraints to robotic mobility to various degrees. This test method specifies apparatuses, procedures, and metrics to standardize this testing. 1.1.3 The test apparatuses are scalable to provide a range of lateral dimensions to constrain the robotic mobility during task performance. Fig. 1 shows three apparatus sizes to test robots intended for different emergency response scenarios. FIG. 1 Mobility: Confined Area Obstacles: Stairs/Landings Apparatuses 1.1.4 Emergency response ground robots shall be able to handle many types of obstacles and terrain complexities. The required mobility capabilities include traversing gaps, hurdles, stairs, slopes, various types of floor surfaces or terrains, and confined passageways. Yet additional mobility requirements include sustained speeds and towing capabilities. Standard test methods are required to evaluate whether candidate robots meet these requirements. 1.1.5 ASTM Task Group E54.08.01 on Robotics specifies a mobility test suite, which consists of a set of test methods for evaluating these mobility capability requirements. This confined area stairs/landings test method is a part of the mobility test suite. The apparatuses associated with the test methods challenge specific robot capabilities in repeatable ways to facilitate comparison of different robot models as well as particular configurations of similar robot models. 1.1.6 The mobility test suite quantifies elemental mobility capabilities necessary for ground robot intended for emergency response applications. As such, users of this standard can use either the entire suite or a subset based on their particular performance requirements. Users are also allowed to weight particular test methods or particular metrics within a test method differently based on their specific performance requirements. The testing results should collectively represent an emergency response ground robot’s overall mobility performance. These performance data can be used to guide procurement specifications and acceptance testing for robots intended for emergency response applications. Note 1: Additional test methods within the suite are anticipated to be developed to address additional or advanced robotic mobility capability requirements, including newly identified requirements and even for new application domains. 1.2 Performing Location— This test method shall be performed in a testing laboratory or the field where the specified apparatus and environmental conditions are implemented. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are not precise mathematical conversions to inch-pound units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 A main purpose of using robots in emergency response operations is to enhance the safety and effectiveness of emergency responders operating in hazardous or inaccessible environments. The testing results of the candidate robot shall describe, in a statistically significant way, how reliably the robot is able to negotiate various types of obstacles, including the specified one, and thus provide emergency responders sufficiently high levels of confidence to determine the applicability of the robot. 5.2 This test method addresses robot performance requirements expressed by emergency responders and representatives from other interested organizations. The performance data captured within this test method are indicative of the testing robot’s capabilities. Having available a roster of successfully tested robots with associated performance data to guide procurement and deployment decisions for emergency responders is consistent with the guideline of “Governments at all levels have a responsibility to develop detailed, robust, all-hazards response plans” as stated in National Response Framework. 5.3 The test apparatuses are scalable to constrain robot maneuverability during task performance for a range of robot sizes in confined areas associated with emergency response operations. Variants of the apparatus provide minimum lateral clearance of 2.4 m (8 ft) for robots expected to operate around environments such as cluttered city streets, parking lots, and building lobbies; minimum lateral clearance of 1.2 m (4 ft) for robots expected to operate in and around environments such as large buildings, stairwells, and urban sidewalks; minimum lateral clearance of 0.6 m (2 ft) for robots expected to operate within environments such as dwellings and work spaces, buses and airplanes, and semi-collapsed structures; minimum lateral clearance of less than 0.6 m (2 ft) with a minimum vertical clearance adjustable from 0.6 m (2 ft) to 10 cm (4 in) for robots expected to deploy through breeches and operate within sub-human size confined spaces voids in collapsed structures. 5.4 The standard apparatus is specified to be easily fabricated to facilitate self-evaluation by robot developers and provide practice tasks for emergency responders that exercise robot actuators, sensors, and operator interfaces. The standard apparatus can also be used to support operator training and establish operator proficiency. 5.5 Although the test method was developed first for emergency response robots, it may be applicable to other operational domains.
分类信息
关联关系
研制信息
归口单位: E54.09
相似标准/计划/法规
现行
ASTM E2801-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Gaps
评估应急机器人功能的标准测试方法:移动性:限制区域障碍:差距
2020-01-01
现行
ASTM E2829-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Maneuvering Tasks: Sustained Speed
评估应急机器人功能的标准测试方法:移动性:机动任务:持续速度
2020-01-01
现行
ASTM E3426/E3426M-24
Standard Test Method for Evaluating Aerial Response Robot Endurance
评估空中反应机器人耐久性的标准试验方法
2024-02-01
现行
ASTM E2803-11(2020)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Mobility: Confined Area Obstacles: Inclined Planes
评估应急机器人功能的标准测试方法:移动性:密闭区域障碍物:倾斜飞机
2020-01-01
现行
ASTM E2830-11(2020)
Standard Test Method for Evaluating the Mobility Capabilities of Emergency Response Robots Using Towing Tasks: Grasped Sleds
使用牵引任务评估应急机器人的移动能力的标准测试方法:抓住雪橇
2020-01-01
现行
ASTM E2855-12(2021)
Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Non-Line-of-Sight Range
评估应急机器人功能的标准测试方法:无线电通信:非视距范围
2021-01-01
现行
ASTM E2566/E2566M-24
Standard Test Method for Evaluating Response Robot Sensing: Visual Acuity
评估响应机器人感应的标准测试方法:视力
2024-11-01
现行
ASTM E2991/E2991M-17
Standard Test Method for Evaluating Response Robot Mobility: Traverse Gravel Terrain
评估响应机器人移动性的标准测试方法:横移砾石地形
2017-09-01
现行
ASTM E2853/E2853M-22
Standard Test Method for Evaluating Ground Response Robot Capabilities: Search Tasks
评估地面反应机器人能力的标准试验方法:搜索任务
2022-05-01
现行
ASTM E2992/E2992M-24
Standard Test Method for Evaluating Response Robot Mobility: Traverse Sand Terrain
评估反应机器人移动性的标准测试方法:横穿沙地形
2024-12-01
现行
ASTM E3380/E3380M-23
Standard Test Method for Evaluating Ground Response Robot Endurance Using Reproducible Terrains
使用可复制地形评估地面反应机器人耐久性的标准试验方法
2023-04-01
现行
ASTM E3408/E3408M-23
Standard Test Method for Evaluating Ground Response Robot Capabilities: Dexterity: Linear Inspection
评估地面反应机器人能力的标准试验方法:灵活性:线性检验
2023-09-15
现行
ASTM E2828/E2828M-20
Standard Test Method for Evaluating Response Robot Mobility Using Symmetric Stepfields Terrains
用对称阶梯场地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2802/E2802M-21e1
Standard Test Method for Evaluating Response Robot Mobility Using Variable Hurdle Obstacles
用可变跨栏障碍物评价机器人机动性的标准试验方法
2021-03-01
现行
ASTM E2854/E2854M-21
Standard Test Method for Evaluating Response Robot Radio Communications Line-of-Sight Range
评定机器人无线电通信视线范围的标准试验方法
2021-01-01
现行
ASTM E2826/E2826M-20
Standard Test Method for Evaluating Response Robot Mobility Using Continuous Pitch/Roll Ramp Terrains
使用连续俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01
现行
ASTM E2827/E2827M-20
Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains
用交叉俯仰/侧倾斜坡地形评估响应机器人机动性的标准试验方法
2020-03-01